Diptendu Sarkar¹, Atanu Mondal² and Subha Roy²

¹Department of Microbiology, Ramakrishna Mission Vidyamandira, Belur Math, Howrah -711202, West Bengal, India

²Department of Computer Science, Ramakrishna Mission Vidyamandira, Belur Math, Howrah -711202, West Bengal, India

Received: Aug 30, 2022/ Revised: Sept 13, 2022/ Accepted: Sept 24, 2022

(✉) Corresponding Author: diptendu81@gmail.com

Abstract

Simulating the potential anticancer action of medicines from the genus Spatholobus is the aim of the current investigation. The 33 bioactive compounds that make up the genus Spatholobus were put together from earlier research. They were analyzed to assess the probability of biological activity using the PASS server. The network analysis and ligand-protein interaction were looked at using the STITCH web server. The features of the pharmacology are evaluated using the SwissADME web server. According to these results, the substances that best meet the requirements for oral intake include medicarpin, maackiain, lupinalbin A, medioresinol, 8-omethylretusin, biochanin A, isoliquiritigenin, coumestrol, and trigraecum. The activation of caspase-3 and Bcl-2 in the apoptosis and p53 signalling pathways by the nine chemicals suggests that they have the ability to combat breast cancer.

Keywords:  Spatholobus, bioactive compounds, network analysis, caspase-3, Bcl-2, p53

References

Brentnall, M., Rodriguez-Menocal, L., De Guevara, R. L., Cepero, E., & Boise, L. H.  (2013). Caspase-9, caspase-3 and caspase-7 have distinct roles during intrinsic apoptosis. BMC Cell Biology, 14(1):32

Chen, F., Zhong, Z., Tan, H. Y., Wang, N., & Feng, Y. (2019). The Underlying Mechanisms of Chinese Herbal Medicine-Induced Apoptotic Cell Death in Human Cancer. In H. Gali-Muhtasib, & O. N. Rahal (Eds.), Programmed Cell Death. IntechOpen. https://doi.org/10.5772/intechopen.87070

Christina, Y. I., Nafisah, W., Atho’illah, M. F., Rifa’i, M., Widodo, N., & Djati, S. (2021). Anti-breast cancer potential activity of Phaleria macrocarpa (Scheff.) Boerl. Leaf extract through in silico studies. Journal of Pharmacy & Pharmacognosy Research, 6(9): 22.

Cragg, G. M., & Pezzuto, J. M. (2006). Natural Products as a Vital Source for the Discovery of Cancer Chemotherapeutic and Chemopreventive Agents. Medical Principles and Practice, 25 (Suppl. 2): 41–59.

Cui, Y., Liu, P., & Chen, R. (2002). Studies on the chemical constituents of Spatholobus suberectus Dunn. Acta pharmaceutica Sinica,  37(10): 784–787.

Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1):42717.

Emami, S., & Ghanbarimasir, Z. (2015). Recent advances of chroman-4-one derivatives: Synthetic approaches and bioactivities. European Journal of Medicinal Chemistry, 93: 539–563.

Govindarasu, M., Ganeshan, S., Ansari, M. A., Mohammad, N., Alomary, Yahya, S. A., Alghamdi, S., Almehmadi, M., Rajakumar, G., Thiruvengadam, M., Vaiyapuri, M. (2021). In silico modeling and molecular docking insights of kaempferitrin for colon cancer-related molecular targets. Journal of Saudi Chemical Society, 25(9),101319. https://doi.org/10.1016/j.jscs.2021.101319.

Kim, J. M., Park, S. K., Kang, J. Y., Park, S. B., Yoo, S. K., Han, H. J., Kim, C. W., Lee, U., Kim, S. H., Heo, H. J. (2021). Ethyl Acetate Fraction from Persimmon (Diospyros kaki) Ameliorates Cerebral Neuronal Loss and Cognitive Deficit via the JNK/Akt Pathway in TMT-Induced Mice. Int J Mol Sci, May 17;19(5):1499. https://doi.org/10.3390/ijms19051499

Kore, K. J., Bramhakule, P. P., Rachhadiya, R. M., & Shete, R. V. (2011). Evaluation of antiulcer activity of protocatechuic acid ethyl ester in rats. Life Sci., 2(7):7.

Lagunin, A. A., Dubovskaja, V. I., Rudik, A. V., Pogodin, P. V., Druzhilovskiy, D. S., Gloriozova, T. A., Filimonov, D. A., Sastry, N. G., & Poroikov, V. V. (2018). CLC-Pred: A freely available web-service for in silico prediction of human cell line cytotoxicity for drug-like compounds.  PLOS ONE, 13:1.

Mutazah, R., Hamid, H. A., Mazila Ramli, A. N., Fasihi Mohd Aluwi, M. F., & Yusoff, M. M. (2020). In vitro cytotoxicity of Clinacanthus nutans fractions on breast cancer cells and molecular docking study of sulphur containing compounds against caspase-3. Food and Chemical Toxicology, 135:110869.

Oubella, A., Mansouri, A. E. E., Fawzi, M., Bimoussa, A., Laamari, Y., Auhmani, A., Robert, H. M. A., Riahi, A., Itto, M. Y. A. (2021). Thiazolidinone-linked1,2,3-triazoles with monoterpenic skeleton as new potential anticancer agents: Design, synthesis and molecular docking studies. Bioorganic Chemistry, 115, 105184. https://doi.org/10.1016/j.bioorg.2021.105184.

Papaliagkas, V., Anogianaki, A., Anogianakis, G., & Ilonidis, G.  (2017). The proteins and the mechanisms of apoptosis: A mini-review of the fundamentals. Hippokratia, 11(3):108–113.

Pistritto, G., Trisciuoglio, D., Ceci, C., Garufi, A., & D’Orazi, G. (2016). Apoptosis as anticancer mechanism: Function and dysfunction of its modulators and targeted therapeutic strategies. Aging, 8(4): 603–619.

Sarkar, D. (2021). Molecular docking with different phytochemicals from the Spatholobus genus plant as medications against acetylcholinesterase enzyme that induces Alzheimer’s disease in human. International Journal of Botany Studies, 6(6), 603-615.

Sichaem, J., Ruksilp, T., Sawasdee, P., Khumkratok, S., & Tip-pyang, S. (2018). Chemical Constituents of the Stems of Spatholobus parviflorus and Their Cholinesterase Inhibitory Activity. Chemistry of Natural Compounds, 54(2):356–357.

Suryanarayana, K., Robert, A. R., Kerru, N., Pooventhiran, T., Thomas, R., Maddila, S., Sreekantha, B., Jonnalagadda. (2021). Design, synthesis, anticancer activity and molecular docking analysis of novel dinitrophenylpyrazole bearing 1,2,3-triazoles. Journal of Molecular Structure, 1243, 130865. https://doi.org/10.1016/j.molstruc.2021.130865

Tang, R.-N., Qu, X.-B., Guan, S.-H., Xu, P.-P., Shi, Y.-Y., & Guo, D.A. (2012). Chemical constituents of Spatholobus suberectus. Chinese Journal of Natural Medicines, 10(1):32–35.

Tay, K. C., Tan, L. T. H., Chan, C. K., Hong, S. L., Chan, K, G., Yap, W. H., Pusparajah, P., Lee, L. H., & Goh, B. H. (2019). Formononetin: A Review of Its Anticancer Potentials and Mechanisms. Frontiers in Pharmacology, 10:820.

Thapa, S., Rather, R. A., Singh, S. K., & Bhagat, M. (2021). Insights into the Role of Defective Apoptosis in Cancer Pathogenesis and Therapy. In (Ed.), Regulation and Dysfunction of Apoptosis. IntechOpen. https://doi.org/10.5772/intechopen.97536

Yanagihara, K., Ito, A., Toge, T., & Numoto, M. (1993). Antiproliferative Effects of Isoflavones on Human Cancer Cell Lines Established from the Gastrointestinal Tract. Cancer Research, 53:8.

Yin, T., Liu, H., Wang, B., Tu, G.Z., Liang, H., & Zhao, Y. Y. (2008). Chemical constituents from Spatholobus sinensis. Acta pharmaceutica Sinica, 43(1): 67–70.

Yoon, J. S., Sung, S. H., Park, J. H. (2004). Flavonoids from Spatholobus suberectus. Arch Pharm Res 27, 589–592. https://doi.org/10.1007/BF02980154

How to cite this article

Sarkar, D., Mondal, A. and Roy, S. (2022). An In silico approach to investigating the anti-breast cancer activity of the plant genus spatholobus. Science Archives, Vol. 3(3), 228-234.  https://doi.org/10.47587/SA.2022.3314

License                      Article Metadata

This work is licensed under a Creative Commons Attribution 4.0 International License.

[pdf_attachment file="1" name="View Details"]