Andi L. Amar¹, Ross J. Coventry², Robert A. Congdon² and Christopher P. Gardiner³

¹Faculty of Animal Husbandry and Fisheries, Universitas Tadulako, Palu 94117 Sulawesi Tengah, Indonesia.

²Tropical Plant Sciences, School of Marine and Tropical Biology, James Cook University, Townsville Qld 4811, Australia

³School of Veterinary and Biomedical Science, James Cook University, Townsville Qld 4811, Australia

Received: May 1, 2023/ Revised: June 6, 2023/Accepted: June 8, 2023

(✉) Corresponding Author: Andiamar85@gmail.com

Abstract

Survival, herbage yield and nutrient use efficiency of ten tropical forage legumes were compared in pot trials using two soil types (red and yellow kandosols), widespread in Australia’s tropical rangelands, over a period of 22 months. Over this period, plants of Centrosema brasilianum cv. Oolloo, Desmodium virgatus, Macroptilium bracteatum (93.8%), Stylosanthes scabra, S. hamata (87.5%) and D. pubescens (68.8%) survived best. Arachis paraguariensis (37.5%), A. triseminalis, M. martii (25.0%) and C. pascuorum (18.8%) were less successful. The highest herbage yields were consistently produced by C. brasilianum, followed by M. bracteatum and the Stylosanthes cultivars. The annual species, C. pascuorum and M. martii gave high yields in the first 3 9-weekly harvests. The Stylosanthes cultivars produced most root nodules, followed by A. paraguariensis, C pascuorum, C. brasilianum and M. martii. D. pubescens, D. virgatus, M. martii, A. triseminalis and C. brasilianum had the highest nitrogen-use efficiencies, whilst C. brasilianum and the two Stylosanthes cultivars had the highest phosphorus-use efficiencies. All of the legumes increased the nitrogen content of the two soils significantly, especially S. hamata, A. paraguariensis, C. brasilianum, M. martii and M. bracteatum. Most of the legumes show promise for use in low-fertility tropical pastures, particularly C. brasilianum and M. bracteatum.

Keywords: Pasture Legumes, Low Fertility, Soils, Rangelands.

References

Almeida dos Santos, C., Monteiro, R. C., Homem, B. G. C., Salgado, L. S., Casagrande, D. R., Pereira, J. M., Rezende, C. de P., Alves, B. J. R. & Boddey, R. M. (2022). Productivity of beef cattle grazing Brachiaria brizantha cv. Marandu with and without nitrogen fertilizer application or mixed pastures with the legume Desmodium ovalifolium. Grass and Forage Science, https://onlinelibrary.wiley.com/doi/10.1111/gfs.12581

Amar, A. L., Congdon, A. R., Gardiner, C. P. & Coventry, R. J. (2016). Quality of seed produced by tropical forage legumes on low fertility soils. Agroland: the Agriculture Science Journal, 3(1): 1-13.

Amar, A. L., Congdon, A. R., Coventry, R. J. & Gardiner, C. P. (2022). Responses of selected tropical forage legumes to imposed drought. Science Archives, 3(3): 158-1167.

Ash, A. J., Corfield, J. P., McIvor, J. G. & Ksiksi, T. S. (2011) Grazing management in tropical savannas: utilization and rest strategies to manipulate rangeland condition. Rangeland Ecology & Management, 64(3), 223-239.

Burt, R. L., Pengelly, B. C. & Williams, W. T. (1980). Network analysis of genetic resources data, III. The elucidation of plant/soil/climate relationships. Agro-Ecosystems, 6, 119-127.

Cannon, M. G. & Coventry, R. L. (1989). Soils of the CSIRO experimental area, ‘Redlands’, Balfes Creek, North Queensland. Divisional Report, 99. (Division of Soils, CSIRO: Australia.).

Caradus, J. R. (1991). The inadequacy of using tissue phosphorus concentration as an indicator of efficiency of phosphorus use. Occasional Report, No. 5:33-41. (Fertilizer and Lime Research Centre: Massey University, New Zealand.).

Cassman, K. G., Singleton, P. W. & Linquist, B. A. (1993). Input/output analysis of the cumulative soybean response to phosphorus on an ultisol. Field Crops Research, 34, 23-36.

Chisholm, R. H. & Blair, G. J. (1988). Phosphorus efficiency in pasture species. I. Measures based on total dry weight and P content. Australian Journal of Agricultural Research, 39, 807-816.

Coates, D. B. (1994). Effect of phosphorus as fertilizer or supplement on pasture and cattle productivity in the semi-arid tropics of north Queensland. Tropical Grasslands, 28, 90-108.

Coates, D. B., Kerridge, P. C., Miller, C. P. & Winter, W. H. (1990). Phosphorus and beef production in northern Australia. 7. The effect of phosphorus on the composition, yield and quality of legume-based pasture and their relation to animal production. Tropical Grasslands, 24, 209-220.

Correia E. D. A., Da Silva, M. V., Vieira, M. E. D. Q. & Araujo, R. D. C. (1994). Valor nutritivo e consumo voluntario de orelha de onca (Macroptilium martii [Benth.] Marechal e Baudet). Pasturas Tropicales, 16, 31.

Edye L. A. (1987). Potential of Stylosanthes for improving tropical grasslands. Outlook on Agriculture, 16, 124-130.

Elliott, K. J. & White, A. S. (1994). Effects of light, nitrogen, and phosphorus on red pine seedling growth and nutrient use efficiency. Forest Science, 40, 47-58.

Garcia-Favre, J., López, I. F., Cranston, L. M., Donaghy, D. J., Kemp, P. D. & Ordóñez, I. P. (2022). Functional contribution of two perennial grasses to enhance pasture production and drought resistance under a leaf regrowth stage defoliation criterion. J. Agronomy and Crop Science, https://onlinelibrary.wiley.com/doi/epdf/10.1111/jac.12602.

Gardiner, C. P. (1992). An Evaluation of Herbaceous Tropical Pasture Legumes with Particular Reference to Desmanthus virgatus. M.Sc. Thesis Thesis. James Cook University of North Queensland.

Gilbert, M. A., Edwards, D. G., Jones, R. K. & Shaw, K. A. (1989). Effect of phosphorus supply on three perennial Stylosanthes species in tropical Australia. I. Vegetative and reproductive growth. Australian Journal of Agricultural Research, 40, 1193-1203.

Gregory, W. C., Krapovickas, A. & Gregory, M. P. (1980). Structure, variation, evolution and classification in Arachis. In: R.J. Summerfield and A.H. Bunting (ed.) Advances in Legume Science. pp. 469-482. (Royal Botanic Gardens,: Richmond, England).

Gunawardena, S. F. B. N., Danso, S. K. A. & Zapata, F. (1993). Phosphorus requirements and nitrogen accumulation by three mungbean (Vigna radiata [L] Welzek) cultivars. Plant and Soil, 147, 267-274.

Gutteridge, R. C. (1985). Survival and regeneration of four legumes oversown into native grasslands in northeast Thailand. Journal of Applied Ecology, 22, 885-894.

Kebede, G., Assefa, G., Feyissa, F. & Mengistu, A. (2016) Forage Legumes in CropLivestock Mixed Farming Systems – A Review. International Journal of Livestock Research, 6(4), 1- 18. doi:10.5455/ijlr.20160317124049

Krapovickas, A. & Gregory, W. C. (1994). Taxonomia del genero Arachis (Leguminosae). Bonplandia, 8, 1-186.

Mahmood, A. & Iqbal, P. (1994). Nodulation status of leguminous plants in Sindh. Pakistan Journal of Botany, 26, 7-20.

McCosker, T. & Winks, L. (1994). Phosphorus Nutrition – of Beef Cattle in Northern Australia. (Meat Research Corporation – Queensland Department of Primary Industries,: Brisbane.).

Oram, R. N. (1990). Register of Australian Herbage Plant Cultivars. Third edition. (CSIRO: Australia.).

Partridge, I., Middleton, C. & Shaw, K. (1996). Stylos for Better Beef. (Queensland Department of Primary Industries,: Brisbane.).

Peoples, M. B., Faizah, A. W., Rerkasem, B. & Herridge, D. F. (1989). Methods for Evaluating Nitrogen Fixation by Nodulated Legumes in the Field. (Australian Centre for International Agricultural Research,: Canberra.).

Sanginga, N. (1992). Early growth and nitrogen-fixation of Leucaena and Gliricidia at different levels of phosphorus application. Fertilizer Research, 31, 165-173.

Sanginga, N., Danso, S. K. A., Zapata, F. & Bowen, G. D. (1995). Phosphorus requirements and nitrogen accumulation by N2- fixing and non-N2-fixing leguminous trees growing in low P soils. Biology and Fertility of Soils, 20, 205-211.

Skerman, P. J., Cameron, D. G. & Riveros, F. (1988). Tropical Forage Legumes. Second edition. (Food and Agriculture Organization of the United Nations: Rome).

Somasegaran, P. & Hoben, H. J. (1985). Methods in Legume Rhizobium Technology. (NIFTAL Project, University of Hawaii,: USA).

Sykes, J. D., Morthorpe, L. J., Gault, R. R. & Brockwell, J. (1988). Soybean inoculation. NSW Agriculture and Fisheries, Agfacts, P5.2.9, 1-4.

Thomas, R. J. (1994). Rhizobium requirements, nitrogen fixation, and nutrient cycling in forage Arachis. In: P. C. Kerridge and B. Hardy (ed.) Biology and Agronomy of Forage Arachis. pp. 84-94. (International Center for Tropical Agriculture,: Colombia.).

Tulu, D. Gadissa, S., Hundessa, F. & Kebede, E. (2023). Contribution of Climate-Smart Forage and Fodder Production for Sustainable Livestock Production and Environment: Lessons and Challenges from Ethiopia. Advances in Agriculture, 11 pages, https://www.hindawi. com/journals/aag/2023/8067776/

Wang, H. Y. & Huang, W. N. (1990). Observation on the structure and ultrastructure of root nodule and nitrogenase activity in Myrica rubra. Acta Phytophysiologica Sinica, 16, 153-157.

Winks, L. (1990). Phosphorus and beef production in northern Australia. 2. Responses to phosphorus by ruminants – a review. Tropical Grasslands, 24, 140-158.

Woodend, J. J. & Glass, A. D. M. (1993). Genotype-environment interaction and correlation between vegetative and grain production measures of potassium use- efficiency in wheat (Triticum aestivum L.) grown under potassium stress. Plant and Soil, 151, 39-44.

How to cite this article

Amar, A. L., Coventry, R. J., Congdon R. A. and Gardiner, C. P. (2023). Regrowth performance of tropical forage legumes on infertile soils. Science Archives, Vol. 4(2), 130-140. https://doi.org/10.47587/SA.2023.4210

License                      Article Metadata

This work is licensed under a Creative Commons Attribution 4.0 International License.

[pdf_attachment file="1" name="View Details"]