Sanghamitra Pal and Goutam Paul

Molecular Neurotoxicology Laboratory, Department of Physiology, University of Kalyani, Kalyani, Nadia,

West Bengal, India

*Corresponding author: goutampaul.ku@gmail.com

Received: May 4, 2021 / Revised: June 12, 2021/ Accepted: June 18, 2021

Abstract

 Bisphenol S (BPS) is a synthetic chemical that is used as a substitute for toxic Bisphenol A (BPA) for the production of polycarbonate plastics, epoxy resins, and paper products. This study has been undertaken to perform a comparative analysis of the toxicity of BPS and BPA on heart ventricular musculature. Adult male albino rats were given BPS, BPA, and a combination of both BPS and BPA for 30 consecutive days via oral gavage. From the results, it can be observed that both BPS and BPA significantly decreased the activities of different antioxidant enzymes (SOD, CAT, GPx, GR, GST), whereas malondialdehyde level has been significantly increased compared to the control. The inhibition of the activities of antioxidant enzymes is more pronounced in BPA than BPS exposed groups. Moreover, BPA leads to a greater degree of degeneration of heart ventricular musculature than BPS. In conclusion, though BPS induces oxidative stress-mediated damages of heart ventricular musculature, the potency of BPS-induced toxicity is comparatively lower than BPA.

Keywords     BPA, BPS, Heart, Oxidative stress

How to cite this article:

Pal, S. and Paul, G. (2021). A comparative study on the toxicity of Bisphenol A (BPA) and Bisphenol S (BPS) on heart ventricular muscle. Science Archives, Vol. 2 (2), 84-89.http://dx.doi.org/10.47587/SA.2021.2204

Copyright

This is an open-access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

References

Acevedo, N., Davis, B., Schaeberle, C. M., Sonneschein, C., & Soto, A. M. (2013). Perinatally administered bisphenol A as a potential mammary gland carcinogen in rats. Environ Health Perspect, 121(9), 1040-1046.

Bancroft, J. D., & Gamble, M. (2008). Theory and practice of histological techniques(6th Edition). Churchill Livingstone Elsevier Pub. ISBN: 978-0-443-10279-0.

Braun, J. M., Kalkbrenner, A. E., Calafat, A. M., Yolton, K., Ye, X., Dietrich, K. N.,& Lanphear, B. P. (2011). Impact of early-life bisphenol A exposure on       behavior and executive function in children. Pediatrics, 128, 873-882.

Česen, M., Lenarčič, K., Mislej, V., Levstek, M., Kovačič, A., Cimrmančič, B., Uranjek, N., Kosjek, T., Heath, D., Dolenc, M. S., & Heath, E. (2018). The occurrence and source identification of bisphenol compounds in wastewaters. Sci Total Environ, 616-617, 744-752.

Devasagayam, T. P., & Tarachand, U. (1987). Decreased lipid peroxidation in the rat kidney during gestation. Biochem Biophys Res Commun, 145(1), 134-138.

Fernández, M., Bourguignon, N., Lux-Lantos, V., & Libertun, C. (2010). Neonatal exposure to bisphenol A and reproductive and endocrine alterations resembling the polycystic ovarian syndrome in adult rats. Environ Health Perspect, 118(9), 1217-1222.

Gao, X., Ma, J., Chen, Y., & Wang, H. S. (2015). Rapid responses and mechanism of action for low-dose bisphenol-S on ex vivo rat hearts and isolated myocytes: evidence of female-specific proarrhythmic effects. Environ Health Perspect, 123(6), 571-578.

Grignard, E., Lapenna, S., & Bremer, S. (2012). Weak estrogenic transcriptional activities of bisphenol A and bisphenol S. Toxicol in Vitro, 26(5), 727-731.

Habig, W. H., Pabst, M. J., & Jakoby, W. B. (1974). Glutathione-S-Transferases: The first enzymatic step in mercapturic acid formation. J Biol Chem, 249(22), 7130-7139.

Ho, S. M., Tang, W. Y., Frausto, J. B., & Prins, G. S. (2006). Developmental exposure to estradiol and bisphenol A increases susceptibility to prostate carcinogenesis and epigenetically regulates phosphodiesterase type 4 variant 4. Cancer Res, 66(11), 5624-5632.

Huang, M., Liu, S., Fu, L., Jiang, X., & Yang, M. (2020). Bisphenol A and its analogues bisphenol S, bisphenol F and bisphenol AF induce oxidative stress and biomacromolecular damage in human granulosa KGN cells. Chemosphere, 253, 126707.

Jin, P., Wang, X., Chang, F., Bai, Y., Li, Y., Zhou, R., & Chen, L. (2013). Low dose bisphenol A impairs spermatogenesis by suppressing reproductive hormone production and promoting germ cell apoptosis in adult rats. J Biomed Res, 27(2), 135-144.

Kang, J. S., Choi, J. S., Kim, W. K., Lee, Y. J., & Park, J. W. (2014). Estrogenic potency of bisphenol S, polyethersulfone and their metabolites generated by the rat liver S9 fractions on a MVLN cell using a luciferase reporter gene assay. Reprod Biol Endocrinol, 12(102), 1-8.

Kashiwagi, K., Furuno, N., Kitamura, S., Ohta, S., Sugihara, K., Utsumi, K., Hanada, H., Taniguchi, K., Suzuki, K., & Kashiwagi, A. (2009).Disruption of thyroid hormone function by environmental pollutants. Journal of Health Science, 55(2), 147-160.

Kinch, C. D., Ibhazehiebo, K., Jeong, J. H., Habibi, H. R., & Kurrasch, D. M. (2015). Low-dose exposure to bisphenol A and replacement bisphenol S induces precocious hypothalamic neurogenesis in embryonic zebrafish. Proc Natl Acad Sci U S A, 112(5), 1475-1480.

Kumamoto, T., & Oshio, S. (2013). Effect of fetal exposure to bisphenol A on brain mediated by X-chromosome inactivation. J Toxicol Sci, 38(3), 485-494.

Lehmler, H. J., Liu, B., Gadogbe, M., & Bao, W. (2018). Exposure to Bisphenol A, bisphenol F, and bisphenol S in U. S. adults and children: The National Health and Nutrition Examination Survey 2013-2014. ACS Omega, 3(6), 6523-6532.

Li, Y., Zhang, W., Liu, J., Wang, W., Li, H., Zhu, J., Weng, S., Xiao, S., & Wu, T. (2013). Prepubertal bisphenol A exposure interferes with ovarian follicle  development and its relevant gene expression. Reprod Toxicol, 44, 33-40.

Liao, C., Liu, F., Guo, Y., Moon, H. B., Nakata, H., Wu, Q., & Kannan, K. (2012). Occurrence of eight bisphenol analogues in indoor dust from the United States and several Asian countries: implications for human exposure. EnvironSci Technol, 46(16), 9138-9145.

Marklund, S., & Marklund, G. (1974). Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem, 47(3), 469-474.

Mokra, K., Kuźmińska-Surowaniec, A., Woźniak, K., & Michałowicz, J. (2017). Evaluation of DNA-damaging potential of bisphenol A and its selected analogs in human peripheral blood mononuclear cells (in vitro study). Food Chem Toxicol, 100, 62-69.

Naderi, M., Wong, M. Y., & Gholami, F. (2014). Developmental exposure of zebrafish (Danio rerio) to bisphenol-S impairs subsequent reproduction potential and hormonal balance in adults. Aquat Toxicol, 148, 195-203.

Nourian, A., Soleimanzadeh, A., Jalali A. S., & Najafi, G. (2017). Effects of bisphenol-S low concentrations on oxidative stress status and in vitro fertilization potential in mature female mice. Vet Res Forum, 8(4), 341-345.

Rotruck, J. T., Pope, A. L., Ganther, H. E., Swanson A. B., Hafeman, D. G., & Hoekstra, W. G. (1973). Selenium: Biochemical roles as a component of glutathione peroxidase. Science, 179(4073), 588-590.

Sarkar, K., Tarafder, P., & Paul, G. (2015). Bisphenol A inhibits duodenal movement ex vivo of rat through nitric oxide-mediated soluble guanylyl cyclase and α-adrenergic signaling pathways. J Appl Toxicol, 36, 131-139.

Schöpel, M., Herrmann, C., Scherkenbeck, J., & Stoll, R. (2016). The bisphenol A analogue bisphenol S binds to K-Ras4B–implications for ‘BPA-free’ plastics. FEBS Lett, 590(3), 369-375.

Sinha, K. A. (1972). Colorimetric assay of Catalase. Anal Biochem, 47(2), 389-394.

Staal, G. E. J., Visser, J., & Veeger, C. (1969). Purification and properties of glutathione reductase of human erythrocytes. Biochim Biophys Acta, 185(1),39-48.

Ullah, H., Jahan, S., Ain, Q. U., Shaheen, G., & Ahsan, N. (2016). Effect of bisphenol S exposure on male reproductive system of rats: A histological and biochemical study. Chemosphere, 152, 383-391.

Wang, C., He, J., Xu T., Han, H., Zhu, Z., Meng, L., Pang Q., & Fan, R. (2021). Bisphenol A (BPA), BPS and BPB-induced oxidative stress and apoptosis mediated by mitochondria in human neuroblastoma cell lines. Ecotoxicol Environ Saf, 207, 111299.

Yamazaki, E., Yamashita, N., Taniyasu, S., Lam, J., Lam, P. K., Moon, H. B., Jeong,Y., Kannan, P., Achyuthan, H., Munuswamy, N., & Kannan, K. (2015). Bisphenol A and other bisphenol analogues including BPS and BPF in surface water samples from Japan, China, Korea and India. Ecotoxicol Environ Saf, 122, 565-572.

Yang, Y., Lu, L., Zhang, J., Yang, Y., Wu, Y., & Shao, B. (2014). Simultaneous  determination of seven bisphenols in environmental water and solid samples by liquid chromatography-electrospray tandem mass spectrometry. J Chromatogr A, 1328, 26-34.

Yoshino, S., Yamaki, K., Li, X., Sai, T., Yanagisawa, R., Takano, H., Taneda, S., Hayashi, H., & Mori, Y. (2004). Prenatal exposure to bisphenol A up-regulates immune responses, including T helper 1 and T helper 2 responses, in mice. Immunology, 112, 489-495.

Zhang, R., Liu, R., & Zong, W. (2016).Bisphenol S interacts with catalase and induces oxidative stress in mouse liver and renal cells. J Agric Food Chem, 64(34), 6630-6640.

Zhang, Z., Lin, L. Gai, Y., Hong, Y., Li, L., & Weng, L. (2018). Subchronic bisphenol S exposure affects liver function in mice involving oxidative damage. Regul Toxicol Pharmacol, 92, 138-144.

Zhu, H., Xiao, X., Zheng, J., Zheng, S., Dong, K., & Yu, Y. (2009). Growth- promoting effect of bisphenol A on neuroblastoma in vitro and in vivo. J Pediatr Surg, 44(4), 672-680.

License                      Article Metadata

This work is licensed under a Creative Commons Attribution 4.0 International License.

View Details