Sarita Mishra, Rakhi Agarwal

 Laboratory of Analytical & Molecular Toxicology (Forensic Chemistry & Toxicology Laboratory)

School of Forensic Science, National Forensic Sciences University, Gujarat, India

rakhi.agarwal@nfsu.ac.in

Received: Jan 25, 2021 / Revised:  Feb 25, 2021/ Accepted: Mar 22, 2021

Abstract

Exposure to various xenobiotics and microbial infections raise serious health concerns including the several phenotypic and behavioral anomalies in the exposed animals. Thus, an early assessment of altered behavioral endpoints will help to identify the toxic nature of a xenobiotic compound and its adverse impacts on the living organism. Several model organisms are being used for the toxicity assessment of various xenobiotics. C. elegans, a worm, possess several behaviors such as pharyngeal pumping, locomotion (speed, body bending), etc. Thus, by examining the alterations in such parameters, one can easily assess the behavioral abnormalities associated with toxicants/infections. In the present study, we have demonstrated a stepwise, simplified version of pharyngeal pumping and the locomotion assays (speed, body bending, omega turn, and reversal locomotion behavior) that can be easily performed in the laboratory for the early health assessment.

Keywords Rapid Assessment, Early Biomarker, Toxicant exposure, Alternate Model, C. elegans, Locomotion, and Pharyngeal pumping behavior

How to cite this article:

Mishra S., Agarwal R. (2021). An Optimized Assay for Early and Rapid Assessment of Behavioral Alterations using Caenorhabditis elegans as an alternate Animal Model Science Archives, Vol. 2 (1), 56-61 http://dx.doi.org/10.47587/SA.2021.2109

Copyright

This is an open-access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

References

Anderson, GL, Cole, RD, & Williams, PL (2004). Assessing behavioral toxicity with Caenorhabditis elegans. Environmental Toxicology and Chemistry: An International Journal , 23 (5), 1235–1240.

Avery, L., & Shtonda, B. B. (2003). Food transport in the C. elegans pharynx. Journal of Experimental Biology206(14), 2441-2457.

Avery,L., &You, Y. (2012).C. elegans feeding.In: The C. elegans Research Community (eds) WormBook. doi/10.1895/wormbook.1.150.1,

Beron, C., Vidal‐Gadea, A. G., Cohn, J., Parikh, A., Hwang, G., & Pierce‐Shimomura, J. T. (2015). The burrowing behavior of the nematode Caenorhabditis elegans: a new assay for the study of neuromuscular disorders. Genes, Brain and Behavior14(4), 357-368.

Buckingham, S. D., & Sattelle, D. B. (2009). Fast, automated measurement of nematode swimming (thrashing) without morphometry. BMC neuroscience10(1), 1-6.

Burden, N., Sewell, F., & Chapman, K. (2015). Testing chemical safety: what is needed to ensure the widespread application of non-animal approaches?. PLoS Biol13(5), e1002156.

Culetto, E., & Sattelle, D. B. (2000). A role for Caenorhabditis elegans in understanding the function and interactions of human disease genes. Human molecular genetics9(6), 869-877.

Elkabti, A. B., Issi, L., & Rao, R. P. (2018). Caenorhabditis elegans as a model host to monitor the Candida infection processes. Journal of Fungi4(4), 123.

Gjorgjieva, J., Biron, D., & Haspel, G. (2014). Neurobiology of Caenorhabditis elegans locomotion: where do we stand?. Bioscience64(6), 476-486.

Hale, R., Piggott, J. J., & Swearer, S. E. (2017). Describing and understanding behavioral responses to multiple stressors and multiple stimuli. Ecology and evolution7(1), 38-47.

Hart, A.C. (2006). Behavior. In: The C. elegans Research Community (eds) WormBook. doi/10.1895/wormbook.1.87.1.

National statistics, Home Office, ASPA (2020). Annual Statistics of Scientific Procedures on Living Animals, Great Britain

https://www.gov.uk/government/ statistics/statistics-of-scientifc-procedures-onliving-animals-great-britain-2019https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/901224/annual-statistics-scientific-procedures-living-animals-2019.pdf

Huang, K. M., Cosman, P., & Schafer, W. R. (2006). Machine vision based detection of omega bends and reversals in C. elegans. Journal of neuroscience methods158(2), 323-336.

Hunt, P. R., Olejnik, N., Bailey, K. D., Vaught, C. A., & Sprando, R. L. (2018). C. elegans development and activity test detects mammalian developmental neurotoxins. Food and Chemical Toxicology121, 583-592.

Hunt, P. R. (2017). The C. elegans model in toxicity testing. Journal of Applied Toxicology37(1), 50-59.

Jadhav, K. B., & Rajini, P. S. (2009). Neurophysiological alterations in Caenorhabditis elegans exposed to dichlorvos, an organophosphorus insecticide. Pesticide biochemistry and physiology94(2-3), 79-85.

Jadhav, K. B., & Rajini, P. S. (2009). Evaluation of sublethal effects of dichlorvos upon Caenorhabditis elegans based on a set of end points of toxicity. Journal of Biochemical and molecular Toxicology23(1), 9-17.

Kaletta, T., & Hengartner, M. O. (2006). Finding function in novel targets: C. elegans as a model organism. Nature reviews Drug discovery5(5), 387-399.

Keller, J., Borzekowski, A., Haase, H., Menzel, R., Rueß, L., & Koch, M. (2018). Toxicity assay for citrinin, zearalenone and zearalenone-14-sulfate using the nematode Caenorhabditis elegans as model organism. Toxins10(7), 284.

Kong, C., Yehye, W. A., Abd Rahman, N., Tan, M. W., & Nathan, S. (2014). Discovery of potential anti-infectives against Staphylococcus aureus using a Caenorhabditis elegans infection model. BMC complementary and alternative medicine14(1), 1-17.

Kudelska, M. M., Holden‐Dye, L., O’Connor, V., & Doyle, D. A. (2017). Concentration‐dependent effects of acute and chronic neonicotinoid exposure on the behaviour and development of the nematode Caenorhabditis elegans. Pest management science73(7), 1345-1351.

Lu, Z., & Qiu, Z. (2017). High glucose concentration restricts fat consumption in Caenorhabditis elegans. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL MEDICINE10(7), 10554–10559.

Maulik, M., Mitra, S., Bult-Ito, A., Taylor, B. E., & Vayndorf, E. M. (2017). Behavioral phenotyping and pathological indicators of Parkinson’s disease in C. elegans models. Frontiers in genetics8, 77.

Marsh, E. K., & May, R. C. (2012). Caenorhabditis elegans, a model organism for investigating immunity. Applied and environmental microbiology78(7), 2075-2081.

Mishra, S., Gaur, A. V., & Agarwal, R. (2020). Standardization of synchronization procedure to collect the similar aged C. elegans. Peer Rev. J. Forens. Gen. Sci4, 268-271.

Mishra S., & Agarwal R. 2020. Assessment of behavioural toxicity in dichlorvos-exposed Caenorhabditis elegans. Environmental and Experimental Biology, 18:305–311.

Raizen, D., Song, B., Trojanowski, N.,&You, Y. (2012). Methods for measuring pharyngeal behaviors. In: The C. elegans Research Community (eds) WormBook. WormBook, doi/10.1895/wormbook.1.154.1, http://www.wormbook.org

Ruszkiewicz, J. A., Pinkas, A., Miah, M. R., Weitz, R. L., Lawes, M. J., Akinyemi, A. J., … & Aschner, M. (2018). C. elegans as a model in developmental neurotoxicology. Toxicology and applied pharmacology354, 126-135.

Salim, C., & Rajini, P. S. (2014). Glucose feeding during development aggravates the toxicity of the organophosphorus insecticide Monocrotophos in the nematode, Caenorhabditis elegans. Physiology & behavior131, 142-148.

Salim, C., Thadathil, N., Muralidhara, M., & Rajini, PS (2018). Insights on the age dependent neurodegeneration induced by Monocrotophos, (an organophosphorous insecticide) in Caenorhabditis elegans fed high glucose: evidence in wild and transgenic strains. Comparative Biochemistry and Physiology Part C: Toxicology and Pharmacology , 211 , 15–24.

Satapathy, P., Salim, C., Naidu, M. M., & Rajini, P. S. (2016). Attenuation of dopaminergic neuronal dysfunction in Caenorhabditis elegans by Hydrophilic Form of Curcumin. Neurochem Neuropharm Open Access2(111), 2.

Stiernagle, T. (2006). Maintenance of C. elegans. In: The C. elegans Research Community (eds) WormBook. doi/10.1895/wormbook.1.101.1,http://www.wormbook.org

Tiwari S.S., Tambo F., &Agarwal R. (2020). Assessment of lead toxicity on locomotion and growth in a nematode Caenorhabditis elegans. Journal of Applied and Natural Science. 12(1), 36–41.

Trojanowski, N. F., Raizen, D. M., & Fang-yen, C. (2016). Pharyngeal pumping in Caenorhabditis elegans depends on tonic and phasic signaling from the nervous system. Scientific Reports,6: 22940.

Wittkowski, P., Marx-Stoelting, P., Violet, N., Fetz, V., Schwarz, F., Oelgeschläger, M., Schönfelder, G., & Vogl, S. (2019). Caenorhabditis elegans As a Promising Alternative Model for Environmental Chemical Mixture Effect Assessment-A Comparative Study. Environmental science & technology53(21), 12725–12733.

Xiong, H., Pears, C., & Woollard, A. (2017). An enhanced C. elegans based platform for toxicity assessment. Scientific reports7(1), 9839.

Zhao, B., Khare, P., Feldman, L., & Dent, J. A. (2003). Reversal frequency in Caenorhabditis elegans represents an integrated response to the state of the animal and its environment. The Journal of neuroscience: the official journal of the Society for Neuroscience23(12), 5319–5328.

Zhen, M., & Samuel, A. D. T. (2015). C. elegans locomotion : small circuits, complex functions. Current Opinion in Neurobiology, 33, 117–126.

License                      Article Metadata

This work is licensed under a Creative Commons Attribution 4.0 International License.

 

View Details