Nabaa ali jasim ✉ , Anwar A. Khadim and  Zwida K. Kadur

Middle Technical University, Institute of Technical, Baqubah, Iraq

Received: June 1, 2023/ Revised: June 25, 2023/Accepted: July 5, 2023

(✉) Corresponding Author: Nabba.ali@mtu.edu.iq.

Abstract

To control microbial infection, a number of novel tactics have been used. Increasingly, a new class of materials called metal oxide nanoparticles is being used. being acknowledged for its potential in health-related applications and research. According to recent investigations, metal oxides Nps that have been properly synthesized have strong antibacterial activity. Zinc oxide (ZnO) offers an array of exceptional advantages that make it a prized material across various fields. With its affordable cost, excellent gas sensing capabilities, and potent photocatalytic activity, ZnO proves to be a valuable asset in numerous applications. Its antimicrobial qualities ensure effective defense against harmful microorganisms, while the ability to create structures with unique optical features and act as a catalyst in small quantities adds to its versatility. Moreover, being non-toxic, ZnO is environmentally friendly and safe for use, making it an all-round remarkable substance with diverse practical uses.

Keywords:  ZNO-NP, Resistance to Antibiotics, Metal Nanoparticles.

References

Aabed, K., & Mohammed, A. E. (2021). Synergistic and antagonistic effects of biogenic silver nanoparticles in combination with antibiotics against some pathogenic microbes. Frontiers in Bioengineering and Biotechnology9, 652362.

Abdelraheem, W. M., & Mohamed, E. S. (2021). The effect of zinc oxide nanoparticles on Pseudomonas aeruginosa biofilm formation and virulence genes expression. The Journal of Infection in Developing Countries15(06), 826-832.

Abdelraheem, W. M., Khairy, R. M., Zaki, A. I., & Zaki, S. H. (2021). Effect of ZnO nanoparticles on methicillin, vancomycin, linezolid resistance and biofilm formation in Staphylococcus aureus isolates. Annals of Clinical Microbiology and Antimicrobials20(1), 54.

Alekish, M., Ismail, Z. B., Albiss, B., & Nawasrah, S. (2018). In vitro antibacterial effects of zinc oxide nanoparticles on multiple drug-resistant strains of Staphylococcus aureus and Escherichia coli: An alternative approach for antibacterial therapy of mastitis in sheep. Veterinary world11(10), 1428.

Almoudi, M. M., Hussein, A. S., Hassan, M. I. A., & Zain, N. M. (2018). A systematic review on antibacterial activity of zinc against Streptococcus mutans. The Saudi dental journal30(4), 283-291.

Baptista, P. V., McCusker, M. P., Carvalho, A., Ferreira, D. A., Mohan, N. M., Martins, M., & Fernandes, A. R. (2018). Nano-strategies to fight multidrug resistant bacteria. “A Battle of the Titans”. Frontiers in microbiology9, 1441.

Bedi, P., & Kaur, A. (2015). An overview on uses of zinc oxide nanoparticles. World Journal of Pharmacy and Pharmaceutical Sciences4(12), 1177-1196.

Diab, R., Khameneh, B., Joubert, O., & Duval, R. (2015). Insights in nanoparticle-bacterium interactions: new frontiers to bypass bacterial resistance to antibiotics. Current pharmaceutical design21(28), 4095-4105.

Ennaoui, A., Weber, M., Scheer, R., & Lewerenz, H. J. (1998). Chemical-bath ZnO buffer layer for CuInS2 thin-film solar cells. Solar Energy Materials and Solar Cells54(1-4), 277-286.

Fadwa, A. O., Albarag, A. M., Alkoblan, D. K., & Mateen, A. (2021). Determination of synergistic effects of antibiotics and Zno NPs against isolated E. Coli and A. Baumannii bacterial strains from clinical samples. Saudi Journal of Biological Sciences28(9), 5332-5337.

Gurkok, S., & Ozdal, M. (2021). Production of Zinc Selenide Nanoparticles (ZnSe-NPs) via Microbial Green Synthesis and Their Antibacterial Activities. In World Congress on Applied Nanotechnology (pp. 102-105).

Huh, A. J., & Kwon, Y. J. (2011). “Nanoantibiotics”: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. Journal of controlled release156(2), 128-145.

Jasim, N. A., Al-Gasha’a, F. A., Al-Marjani, M. F., Al-Rahal, A. H., Abid, H. A., Al-Kadhmi, N. A., … & Rheima, A. M. (2020). ZnO nanoparticles inhibit growth and biofilm formation of vancomycin-resistant S. aureus (VRSA). Biocatalysis and Agricultural Biotechnology29, 101745.

Kaplan, J. B., Ragunath, C., Ramasubbu, N., & Fine, D. H. (2003). Detachment of Actinobacillus actinomycetemcomitans biofilm cells by an endogenous β-hexosaminidase activity. Journal of bacteriology185(16), 4693-4698.

Khameneh, B., Diab, R., Ghazvini, K., & Bazzaz, B. S. F. (2016). Breakthroughs in bacterial resistance mechanisms and the potential ways to combat them. Microbial pathogenesis95, 32-42.

Leung, Y. H., Xu, X., Ma, A. P., Liu, F., Ng, A. M., Shen, Z., & Leung, F. C. (2016). Toxicity of ZnO and TiO2 to Escherichia coli cells. Scientific reports6(1), 35243.

Lok, C. N., Ho, C. M., Chen, R., He, Q. Y., Yu, W. Y., Sun, H., … & Che, C. M. (2006). Proteomic analysis of the mode of antibacterial action of silver nanoparticles. Journal of proteome research5(4), 916-924.

Manzoor, S., Bashir, D. J., Imtiyaz, K., Rizvi, M. M. A., Ahamad, I., Fatma, T., … & Samim, M. (2021). Biofabricated platinum nanoparticles: therapeutic evaluation as a potential nanodrug against breast cancer cells and drug-resistant bacteria. RSC advances11(40), 24900-24916.

Ozdal, M., & Gurkok, S. (2022). Recent advances in nanoparticles as antibacterial agent. ADMET and DMPK10(2), 115-129.

Pal, S., Tak, Y. K., & Song, J. M. (2007). Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Applied and environmental microbiology73(6), 1712-1720.

Premanathan, M., Karthikeyan, K., Jeyasubramanian, K., & Manivannan, G. (2011). Selective toxicity of ZnO nanoparticles toward Gram-positive bacteria and cancer cells by apoptosis through lipid peroxidation. Nanomedicine: Nanotechnology, Biology and Medicine7(2), 184-192.

Rai, M. K., Deshmukh, S. D., Ingle, A. P., & Gade, A. K. (2012). Silver nanoparticles: the powerful nanoweapon against multidrug‐resistant bacteria. Journal of applied microbiology112(5), 841-852.

Reddy, L. S., Nisha, M. M., Joice, M., & Shilpa, P. N. (2014). Antimicrobial activity of zinc oxide (ZnO) nanoparticle against Klebsiella pneumonia. Pharmaceutical biology52(11), 1388-1397.

Shakerimoghaddam, A., Ghaemi, E. A., & Jamalli, A. (2017). Zinc oxide nanoparticle reduced biofilm formation and antigen 43 expressions in uropathogenic Escherichia coli. Iranian journal of basic medical sciences20(4), 451.

Shanmuganathan, R., MubarakAli, D., Prabakar, D., Muthukumar, H., Thajuddin, N., Kumar, S. S., & Pugazhendhi, A. (2018). An enhancement of antimicrobial efficacy of biogenic and ceftriaxone-conjugated silver nanoparticles: green approach. Environmental Science and Pollution Research25, 10362-10370.

Slomberg, D. L., Lu, Y., Broadnax, A. D., Hunter, R. A., Carpenter, A. W., & Schoenfisch, M. H. (2013). Role of size and shape on biofilm eradication for nitric oxide-releasing silica nanoparticles. ACS applied materials & interfaces5(19), 9322-9329.

How to cite this article

Jasim, N. A., Khadim, A. A. and Kadur, Z. K. (2023). Antibacterial Activity of ZnO Nanoparticles Against Diverse Bacterial Strains. Science Archives, Vol. 4(3), 195-198. https://doi.org/10.47587/SA.2023.4303

Licence                  Article Metadata

This work is licensed under a Creative Commons Attribution 4.0 International License.

[pdf_attachment file="1" name="View Details"]