Hawraa F Wali and Hedaa M Nahab

Department of Biology, College of Science, Al Muthanna University, Al Muthanna Province, Iraq

*Corresponding author: Hawraafalih@mu.edu.iq

Received: May 23, 2021 / Revised: June 23, 2021/ Accepted: June 25, 2021

Abstract

Nanotechnology has captured the attention of researchers in all basic sciences, including physics, chemistry, and biology. It is concerned with particle size range from 1-100 nanometers. In this review they give a brief description about Nanotechnology in Iraq, Types of synthesis, study the characterization and its application in various fields viz. medicine, industry, agriculture, electronic and in the oil field. Nanoparticles have been used in a variety of sectors of research and technology in recent years, ranging from material science to microbiology. As a result, nanoparticle synthesis can be considered an active area in nanoparticle research and application. Physical, chemical, and biological methods of nanoparticle synthesis are all available. The biological approach is the most effective of these.

Keywords    Nanoparticles, Material science, Microbiology and Nanotechnology

How to cite this article:

Wali, H. F., Nahab, H. M. (2021). Effect of metallic nanoparticles on microorganism. A review. Science Archives,Vol.2(2),135-143. http://dx.doi.org/10.47587/SA.2021.2213

Copyright

This is an open-access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

References

Abkhoo, J., & Panjehkeh, N. (2017). Evaluation of antifungal activity of silver nanoparticles on Fusariumoxysporum. International Journal of Infection, 4(2).

Ahmad, T., Wani, I. A., Lone, I. H., Ganguly, A., Manzoor, N., Ahmad, A., & Al-Shihri, A. S. (2013). Antifungal activity of gold nanoparticles prepared by solvothermal method. Materials Research Bulletin, 48(1), 12-20.

Alghuthaymi, M. A., Almoammar, H., Rai, M., Said-Galiev, E., &Abd-Elsalam, K. A. (2015). Myconanoparticles: synthesis and their role in phytopathogens management. Biotechnology & Biotechnological Equipment, 29(2), 221-236.

Ammulu, M. A., Viswanath, K. V., Giduturi, A. K., Vemuri, P. K., Mangamuri, U., & Poda, S. (2021). Phytoassisted synthesis of magnesium oxide nanoparticles from Pterocarpusmarsupiumrox. b heartwood extract and its biomedical applications. Journal of Genetic Engineering and Biotechnology, 19(1), 1-18.

Arvizo, R. R., Rana, S., Miranda, O. R., Bhattacharya, R., Rotello, V. M., & Mukherjee, P. (2011). Mechanism of anti-angiogenic property of gold nanoparticles: role of nanoparticle size and surface charge. Nanomedicine: nanotechnology, biology and medicine, 7(5), 580-587.

Baram-Pinto, D., Shukla, S., Perkas, N., Gedanken, A., & Sarid, R. (2009). Inhibition of herpes simplex virus type 1 infection by silver nanoparticles capped with mercaptoethanesulfonate. Bioconjugate chemistry, 20(8), 1497-1502.

Bhattacharya, R., Mukherjee, P., Xiong, Z., Atala, A., Soker, S., & Mukhopadhyay, D. (2004). Gold nanoparticles inhibit VEGF165-induced proliferation of HUVEC cells. Nano Letters, 4(12), 2479-2481.

Bowman, M. C., Ballard, T. E., Ackerson, C. J., Feldheim, D. L., Margolis, D. M., &Melander, C. (2008). Inhibition of HIV fusion with multivalent gold nanoparticles. Journal of the American Chemical Society, 130(22), 6896-6897.

Bzdek, B. R., Zordan, C. A., Luther III, G. W., & Johnston, M. V. (2011). Nanoparticle chemical composition during new particle formation. Aerosol Science and Technology, 45(8), 1041-1048.

Cerjak, H. (2014). Book note: introductions to nanoparticles and nanomaterials.

Chandran, S. P., Chaudhary, M., Pasricha, R., Ahmad, A., & Sastry, M. (2006). Synthesis of gold nanotriangles and silver nanoparticles using Aloevera plant extract. Biotechnology progress, 22(2), 577-583.

Chen, H., Shao, L., Ming, T., Sun, Z., Zhao, C., Yang, B., & Wang, J. (2010). Understanding the photothermal conversion efficiency of gold nanocrystals. small, 6(20), 2272-2280.

Chiriac, V., Stratulat, D. N., Calin, G., Nichitus, S., Burlui, V., Stadoleanu, C., & Popa, I. M. (2016, June). Antimicrobial property of zinc based nanoparticles. In IOP conference series: materials science and engineering (Vol. 133, No. 1, p. 012055). IOP Publishing.

Day, E. S., Morton, J. G., & West, J. L. (2009). Nanoparticles for thermal cancer therapy.

Díaz, M. R., & Vivas-Mejia, P. E. (2013). Nanoparticles as drug delivery systems in cancer medicine: emphasis on RNAi-containing nanoliposomes. Pharmaceuticals, 6(11), 1361-1380.

Doria, G., Conde, J., Veigas, B., Giestas, L., Almeida, C., Assunção, M., & Baptista, P. V. (2012). Noble metal nanoparticles for biosensing applications. Sensors, 12(2), 1657-1687.

Dreaden, E. C., Alkilany, A. M., Huang, X., Murphy, C. J., & El-Sayed, M. A. (2012). The golden age: gold nanoparticles for biomedicine. Chemical Society Reviews, 41(7), 2740-2779.

Du, L., Jiang, H., Liu, X., & Wang, E. (2007). Biosynthesis of gold nanoparticles assisted by Escherichia coli DH5α and its application on direct electrochemistry of hemoglobin. Electrochemistry Communications, 9(5), 1165-1170.

Elumalai, K., & Velmurugan, S. (2015). Green synthesis, characterization and antimicrobial activities of zinc oxide nanoparticles from the leaf extract of Azadirachtaindica (L.). Applied Surface Science, 345, 329-336.

Espitia, P. J. P., Soares, N. D. F. F., dos Reis Coimbra, J. S., de Andrade, N. J., Cruz, R. S., & Medeiros, E. A. A. (2012). Zinc oxide nanoparticles: synthesis, antimicrobial activity and food packaging applications. Food and bioprocess technology, 5(5), 1447-1464.

Galdiero, S., Falanga, A., Vitiello, M., Cantisani, M., Marra, V., & Galdiero, M. (2011). Silver nanoparticles as potential antiviral agents. Molecules, 16(10), 8894-8918.

Ganesh, K., & Archana, D. (2013). Review Article on Targeted Polymeric Nanoparticles: An Overview. Am. J. Adv. Drug Deliv, 3(3), 196-215.

Gawande, M. B., Goswami, A., Felpin, F. X., Asefa, T., Huang, X., Silva, R., & Varma, R. S. (2016). Cu and Cu-based nanoparticles: synthesis and applications in catalysis. Chemical reviews, 116(6), 3722-3811.

Geonmonond, R. S., Silva, A. G. D., & Camargo, P. H. (2018). Controlled synthesis of noble metal nanomaterials: motivation, principles, and opportunities in nanocatalysis. Anais da Academia Brasileira de Ciências, 90, 719-744.

Ghosh, P., Han, G., De, M., Kim, C. K., & Rotello, V. M. (2008). Gold nanoparticles in delivery applications. Advanced drug delivery reviews, 60(11), 1307-1315.

Gibson, J. D., Khanal, B. P., & Zubarev, E. R. (2007). Paclitaxel-functionalized gold nanoparticles. Journal of the American Chemical Society, 129(37), 11653-11661.

Hameed, A. S. H., Karthikeyan, C., Kumar, V. S., Kumaresan, S., & Sasikumar, S. (2015). Effect of Mg2+, Ca2+, Sr2+ and Ba2+ metal ions on the antifungal activity of ZnO nanoparticles tested against Candida albicans. Materials Science and Engineering: C, 52, 171-177.

Hanus, M. J., & Harris, A. T. (2013). Nanotechnology innovations for the construction industry. Progress in materials science, 58(7), 1056-1102.

He, Y., Ingudam, S., Reed, S., Gehring, A., Strobaugh, T. P., & Irwin, P. (2016). Study on the mechanism of antibacterial action of magnesium oxide nanoparticles against foodborne pathogens. Journal of nanobiotechnology, 14(1), 1-9.

Hodoroaba, V. D., Rades, S., & Unger, W. E. (2014). Inspection of morphology and elemental imaging of single nanoparticles by high‐resolution SEM/EDX in transmission mode. Surface and interface analysis, 46(10-11), 945-948.

Hossain, F., Perales-Perez, O. J., Hwang, S., &Román, F. (2014). Antimicrobial nanomaterials as water disinfectant: applications, limitations and future perspectives. Science of the total environment, 466, 1047-1059.

Huang, J., Li, Q., Sun, D., Lu, Y., Su, Y., Yang, X., & Chen, C. (2007). Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomumcamphora leaf. Nanotechnology, 18(10), 105104.

Hussein-Al-Ali, S. H., El Zowalaty, M. E., Hussein, M. Z., Geilich, B. M., & Webster, T. J. (2014). Synthesis, characterization, and antimicrobial activity of an ampicillin-conjugated magnetic nanoantibiotic for medical applications. International journal of nanomedicine, 9, 3801.

Ifuku, S., Tsukiyama, Y., Yukawa, T., Egusa, M., Kaminaka, H., Izawa, H., … &Saimoto, H. (2015). Facile preparation of silver nanoparticles immobilized on chitin nanofiber surfaces to endow antifungal activities. Carbohydrate polymers, 117, 813-817.

Iravani, S. (2011). Green synthesis of metal nanoparticles using plants. Green Chemistry, 13(10), 2638-2650.

Iravani, S., Korbekandi, H., Mirmohammadi, S. V., &Zolfaghari, B. (2014). Synthesis of silver nanoparticles: chemical, physical and biological methods. Research in pharmaceutical sciences, 9(6), 385.

Jin, C., Wang, K., Oppong-Gyebi, A., & Hu, J. (2020). Application of nanotechnology in cancer diagnosis and therapy-a mini-review. International Journal of Medical Sciences, 17(18), 2964.

Jumaah, M. W., &Altaie, M. (2020, August). Application of Nanotechnology in Iraqi Construction Projects. In IOP Conference Series: Materials Science and Engineering (Vol. 901, No. 1, p. 012019). IOP Publishing.

Käosaar, S., Kahru, A., Mantecca, P., & Kasemets, K. (2016). Profiling of the toxicity mechanisms of coated and uncoated silver nanoparticles to yeast Saccharomyces cerevisiae BY4741 using a set of its 9 single-gene deletion mutants defective in oxidative stress response, cell wall or membrane integrity and endocytosis. Toxicology in Vitro, 35, 149-162.

Katwal, R., Kaur, H., Sharma, G., Naushad, M., &Pathania, D. (2015). Electrochemical synthesized copper oxide nanoparticles for enhanced photocatalytic and antimicrobial activity. Journal of Industrial and Engineering Chemistry, 31, 173-184.

Khan, I., Saeed, K., & Khan, I. (2019). Nanoparticles: Properties, applications and toxicities. Arabian journal of chemistry, 12(7), 908-931.

Khandelwal, N., Kaur, G., Kumar, N., & Tiwari, A. (2014). APPLICATION OF SILVER NANOPARTICLES IN VIRAL INHIBITION: A NEW HOPE FOR ANTIVIRALS. Digest Journal of Nanomaterials&Biostructures (DJNB), 9(1).

Kharissova, O. V., Dias, H. R., Kharisov, B. I., Pérez, B. O., & Pérez, V. M. J. (2013). The greener synthesis of nanoparticles. Trends in biotechnology, 31(4), 240-248.

Kim, K. J., Sung, W. S., Suh, B. K., Moon, S. K., Choi, J. S., Kim, J. G., & Lee, D. G. (2009). Antifungal activity and mode of action of silver nano-particles on Candida albicans. Biometals, 22(2), 235-242.

Kim, S. W., Jung, J. H., Lamsal, K., Kim, Y. S., Min, J. S., & Lee, Y. S. (2012). Antifungal effects of silver nanoparticles (AgNPs) against various plant pathogenic fungi. Mycobiology, 40(1), 53-58.

Knetsch, M. L., &Koole, L. H. (2011). New strategies in the development of antimicrobial coatings: the example of increasing usage of silver and silver nanoparticles. Polymers, 3(1), 340-366.

Kumar, N., Palmer, G. R., Shah, V., & Walker, V. K. (2014). The effect of silver nanoparticles on seasonal change in arctic tundra bacterial and fungal assemblages. PLoS One, 9(6), e99953.

Laad, M., &Jatti, V. K. S. (2018). Titanium oxide nanoparticles as additives in engine oil. Journal of King Saud University-Engineering Sciences, 30(2), 116-122.

Lara, H. H., Ayala-Nuñez, N. V., Ixtepan-Turrent, L., & Rodriguez-Padilla, C. (2010). Mode of antiviral action of silver nanoparticles against HIV-1. Journal of nanobiotechnology, 8(1), 1-10.

Lee, K. J., Park, S. H., Govarthanan, M., Hwang, P. H., Seo, Y. S., Cho, M., … & Oh, B. T. (2013). Synthesis of silver nanoparticles using cow milk and their antifungal activity against phytopathogens. Materials Letters, 105, 128-131.

Lemire, J. A., Harrison, J. J., & Turner, R. J. (2013). Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nature Reviews Microbiology, 11(6), 371-384.

Li, C., Wang, X., Chen, F., Zhang, C., Zhi, X., Wang, K., & Cui, D. (2013). The antifungal activity of graphene oxide–silver nanocomposites. Biomaterials, 34(15), 3882-3890.

Lin, L., Wang, W., Huang, J., Li, Q., Sun, D., Yang, X., & Wang, Y. (2010). Nature factory of silver nanowires: Plant-mediated synthesis using broth of Cassia fistula leaf. Chemical Engineering Journal, 162(2), 852-858.

Lipovsky, A., Nitzan, Y., Gedanken, A., & Lubart, R. (2011). Antifungal activity of ZnO nanoparticles—the role of ROS mediated cell injury. Nanotechnology, 22(10), 105101.

Liu, J., Cui, L., & Losic, D. (2013). Graphene and graphene oxide as new nanocarriers for drug delivery applications. Actabiomaterialia, 9(12), 9243-9257.

Liu, W. T. (2006). Nanoparticles and their biological and environmental applications. Journal of bioscience and bioengineering, 102(1), 1-7.

Lovley, D. R., Stolz, J. F., Nord, G. L., & Phillips, E. J. (1987). Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism. Nature, 330(6145), 252-254.

Ma, H., Williams, P. L., & Diamond, S. A. (2013). Ecotoxicity of manufactured ZnO nanoparticles–a review. Environmental Pollution, 172, 76-85.

Makarov, V. V., Love, A. J., Sinitsyna, O. V., Makarova, S. S., Yaminsky, I. V., Taliansky, M. E., & Kalinina, N. O. (2014). “Green” nanotechnologies: synthesis of metal nanoparticles using plants. ActaNaturae (англоязычнаяверсия), 6(1 (20)).

Mallipeddi, R., & Rohan, L. C. (2010). Nanoparticle-based vaginal drug delivery systems for HIV prevention. Expert opinion on drug delivery, 7(1), 37-48.

Mansha, M., Khan, I., Ullah, N., Qurashi, A., & Sohail, M. (2017). Visible-light driven photocatalytic oxygen evolution reaction from new poly (phenylenecyanovinylenes). Dyes and Pigments, 143, 95-102.

Marsalek, R. (2014). Particle size and zeta potential of ZnO. APCBEE procedia, 9, 13-17.

Mudshinge, S. R., Deore, A. B., Patil, S., & Bhalgat, C. M. (2011). Nanoparticles: emerging carriers for drug delivery. Saudi pharmaceutical journal, 19(3), 129-141.

Murphy, M., Ting, K., Zhang, X., Soo, C., & Zheng, Z. (2015). Current development of silver nanoparticle preparation, investigation, and application in the field of medicine. Journal of nanomaterials, 2015.

Nishiyama, N. (2007). Nanomedicine: nanocarriers shape up for long life. Nature nanotechnology, 2(4), 203.

Nowack, B., & Bucheli, T. D. (2007). Occurrence, behavior and effects of nanoparticles in the environment. Environmental pollution, 150(1), 5-22.

Ogar, A., Tylko, G., & Turnau, K. (2015). Antifungal properties of silver nanoparticles against indoor mould growth. Science of the Total Environment, 521, 305-314.

Othman, S. H., Abd Salam, N. R., Zainal, N., KadirBasha, R., & Talib, R. A. (2014). Antimicrobial activity of TiO2 nanoparticle-coated film for potential food packaging applications. International Journal of Photoenergy, 2014.

Papp, I., Sieben, C., Ludwig, K., Roskamp, M., Böttcher, C., Schlecht, S., & Haag, R. (2010). Inhibition of influenza virus infection by multivalent sialic‐acid‐functionalized gold nanoparticles. Small, 6(24), 2900-2906.

Pócsi, I. (2011). Toxic metal/metalloid tolerance in fungi—a biotechnology-oriented approach. In Cellular effects of heavy metals (pp. 31-58). Springer, Dordrecht.

Pusty, M., Rana, A. K., Kumar, Y., Sathe, V., Sen, S., & Shirage, P. (2016). Synthesis of partially reduced graphene oxide/silver nanocomposite and its inhibitive action on pathogenic fungi grown under ambient conditions. Chemistry Select, 1(14), 4235-4245.

Qian, X., Peng, X. H., Ansari, D. O., Yin-Goen, Q., Chen, G. Z., Shin, D. M., & Nie, S. (2008). In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nature biotechnology, 26(1), 83-90.

Quirós, J., Gonzalo, S., Jalvo, B., Boltes, K., Perdigón-Melón, J. A., & Rosal, R. (2016). Electrospun cellulose acetate composites containing supported metal nanoparticles for antifungal membranes. Science of the Total Environment, 563, 912-920.

Ramezani, N., Ehsanfar, Z., Shamsa, F., Amin, G., Shahverdi, H. R., Esfahani, H. R. M., & Shahverdi, A. R. (2008). Screening of medicinal plant methanol extracts for the synthesis of gold nanoparticles by their reducing potential. ZeitschriftfürNaturforschung B, 63(7), 903-908.

Rampino, L. D., & Nord, F. F. (1941). Preparation of palladium and platinum synthetic high polymer catalysts and the relationship between particle size and rate of hydrogenation. Journal of the American Chemical Society, 63(10), 2745-2749.

Rao, J. P., & Geckeler, K. E. (2011). Polymer nanoparticles: preparation techniques and size-control parameters. Progress in polymer science, 36(7), 887-913.

Rathnayake, W. G. I. U., Ismail, H., Baharin, A., Darsanasiri, A. G. N. D., & Rajapakse, S. (2012). Synthesis and characterization of nano silver based natural rubber latex foam for imparting antibacterial and anti-fungal properties. Polymer Testing, 31(5), 586-592.

Ravichandran, V., Vasanthi, S., Shalini, S., Shah, S. A. A., & Harish, R. (2016). Green synthesis of silver nanoparticles using Atrocarpusaltilis leaf extract and the study of their antimicrobial and antioxidant activity. Materials Letters, 180, 264-267.

RavishankarRai, V. (2011). Nanoparticles and their potential application as antimicrobials.

Ranjan, A., Rajput, V. D., Minkina, T., Bauer, T., Chauhan, A., & Jindal, T. (2021).Nanoparticles Induced Stress and Toxicity in Plants. Environmental Nanotechnology, Monitoring & Management, 100457.

Salavati-Niasari, M., Davar, F., & Mir, N. (2008). Synthesis and characterization of metallic copper nanoparticles via thermal decomposition. Polyhedron, 27(17), 3514-3518.

Sánchez-López, E., Gomes, D., Esteruelas, G., Bonilla, L., Lopez-Machado, A. L., Galindo, R., & Souto, E. B. (2020). Metal-based nanoparticles as antimicrobial agents: an overview. Nanomaterials, 10(2), 292.

Shah, M., Fawcett, D., Sharma, S., Tripathy, S. K., & Poinern, G. E. J. (2015). Green synthesis of metallic nanoparticles via biological entities. Materials, 8(11), 7278-7308.

Shahverdi, A. R., Fakhimi, A., Shahverdi, H. R., & Minaian, S. (2007). Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomedicine: Nanotechnology, Biology and Medicine, 3(2), 168-171.

Shankar, S. S., Ahmad, A., & Sastry, M. (2003). Geranium leaf assisted biosynthesis of silver nanoparticles. Biotechnology progress, 19(6), 1627-1631.

Shankar, S. S., Rai, A., Ahmad, A., & Sastry, M. (2004). Rapid synthesis of Au, Ag, and bimetallic Au core–Ag shell nanoparticles using Neem (Azadirachtaindica) leaf broth. Journal of colloid and interface science, 275(2), 496-502.

Sharma, V., & Rao, L. J. M. (2014). An overview on chemical composition, bioactivity and processing of leaves of Cinnamomumtamala. Critical reviews in food science and nutrition, 54(4), 433-448.

Shinde, N. C., Keskar, N. J., & Argade, P. D. (2012). Nanoparticles: Advances in drug delivery systems. Res. J. Pharm. Biol. Chem. Sci, 3, 922-929.

Singaravelu, G., Arockiamary, J. S., Kumar, V. G., & Govindaraju, K. (2007). A novel extracellular synthesis of monodisperse gold nanoparticles using marine alga, SargassumwightiiGreville. Colloids and surfaces B: Biointerfaces, 57(1), 97-101.

Singh, J., Dutta, T., Kim, K. H., Rawat, M., Samddar, P., & Kumar, P. (2018). ‘Green’synthesis of metals and their oxide nanoparticles: applications for environmental remediation. Journal of nanobiotechnology, 16(1), 1-24.

Slavin, Y. N., Asnis, J., Häfeli, U. O., & Bach, H. (2017). Metal nanoparticles: understanding the mechanisms behind antibacterial activity. Journal of nanobiotechnology, 15(1), 1-20.

Slawson, R. M., Van Dyke, M. I., Lee, H., & Trevors, J. T. (1992). Germanium and silver resistance, accumulation, and toxicity in microorganisms. Plasmid, 27(1), 72-79.

Sperling, R. A., & Parak, W. J. (2010). Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles. Philosophical Transactions of the Royal Society A: Mathematical,

Physical and Engineering Sciences, 368(1915), 1333-1383.

Speshock, J., & Hussain, S. (2009). Novel nanotechnology-based antiviral agents: silver nanoparticle neutralization of hemorrhagic fever viruses. Air Force Research Laboratory, Unclassified Document 88AWB-2009-4491.

Sun, L., Singh, A. K., Vig, K., Pillai, S. R., & Singh, S. R. (2008). Silver nanoparticles inhibit replication of respiratory syncytial virus. Journal of Biomedical Nanotechnology, 4(2), 149-158.

Suresh, S., Karthikeyan, S., Saravanan, P., Jayamoorthy, K., & Dhanalekshmi, K. I. (2016). Comparison of antibacterial and antifungal activity of 5-amino-2-mercapto benzimidazole and functionalized Ag3O4 nanoparticles. Karbala International Journal of Modern Science, 2(2), 129-137.

Tan, G., Sağlam, S., Emül, E., Erdönmez, D., & Sağlam, N. (2016). Synthesis and characterization of silver nanoparticles integrated in polyvinyl alcohol nanofibers for bionanotechnological applications. Turkish Journal of Biology, 40(3), 643-651.

Tang, Z. X., & Lv, B. F. (2014). MgO nanoparticles as antibacterial agent: preparation and activity. Brazilian Journal of Chemical Engineering, 31, 591-601.

Taylor, U., Klein, S., Petersen, S., Kues, W., Barcikowski, S., & Rath, D. (2010). Nonendosomal cellular uptake of ligand‐free, positively charged gold nanoparticles. Cytometry Part A: The Journal of the International Society for Advancement of Cytometry, 77(5), 439-446.

Tiwari, D. K., Behari, J., & Sen, P. (2008). Application of nanoparticles in waste water treatment 1.

Tsai, C. Y., Shiau, A. L., Chen, S. Y., Chen, Y. H., Cheng, P. C., Chang, M. Y., & Wu, C. L. (2007). Amelioration of collagen‐induced arthritis in rats by nanogold. Arthritis & Rheumatism: Official Journal of the American College of Rheumatology, 56(2), 544-554.

Vithiya, K., & Sen, S. (2011). Biosynthesis of nanoparticles. International Journal of Pharmaceutical Sciences and Research, 2(11), 2781.

Wang, L., Hu, C., & Shao, L. (2017). The antimicrobial activity of nanoparticles: present situation and prospects for the future. International journal of nanomedicine, 12, 1227.

Warnes, S. L., Caves, V., & Keevil, C. W. (2012). Mechanism of copper surface toxicity in Escherichia coli O157: H7 and Salmonella involves immediate membrane depolarization followed by slower rate of DNA destruction which differs from that observed for Gram‐positive bacteria. Environmental microbiology, 14(7), 1730-1743.

Xia, Z. K., Ma, Q. H., Li, S. Y., Zhang, D. Q., Cong, L., Tian, Y. L., & Yang, R. Y. (2016). The antifungal effect of silver nanoparticles on Trichosporonasahii. Journal of Microbiology, Immunology and Infection, 49(2), 182-188.

Yano, F., Hiraoka, A., Itoga, T., Kojima, H., Kanehori, K., & Mitsui, Y. (1996). Influence of ion-implantation on native oxidation of Si in a clean-room atmosphere. Applied surface science, 100, 138-142.

Zhang, Y., R Nayak, T., Hong, H., & Cai, W. (2013). Biomedical applications of zinc oxide nanomaterials. Current molecular medicine, 13(10), 1633-1645.

License                      Article Metadata

This work is licensed under a Creative Commons Attribution 4.0 International License.

View Details