Shatha Raheem Helal Alhimidi

Department of Physiology and Medical Physics, College of Medicine, Al-Muthanna University, Iraq

Received: Aug 6, 2023/ Revised: Sept 2, 2023/Accepted: Sept 12, 2023

(✉) Corresponding Author: shatharaheem@mu.edu.iq

Abstract

The bridging Fe-S-Fe, bridging Fe-CO-Fe, and terminal Fe-CO bonds of mono-chalcogenide triiron carbonyl cluster [Fe3(CO)73-CO)(µ3-S)(µ-dppm)][dppm; diphosphine bis(diphenylphosphino)methane] were characterized utilizing the quantum theory of atoms in a molecule (QTAIM) topological analysis. To our knowledge, there are a few studies investigating Fe–Fe and Fe–S bonds using QTAIM topological analysis. Analysis of the Fe1-s1-Fe2-C3-Fe3 moiety, which is the core of the bridged cluster, showed that there is no bonding pathway between the bonding critical point and the Fe atoms. The parameters electron density ρ(r) and its Laplacian ∇2ρ(r) calculated for Fe-s and Fe-C showed a pronounced pure σ-bonding of this interaction.

Keywords:  Aim program, DFT calculations, Delocalization, Iron- cluster, Laplacian

References

 Alhimidi, S. R. H., Al-Ibadi, M. A. M., Hasan, A. H., & Taha, A. (2018, May). The QTAIM approach to chemical bonding in triruthenium carbonyl cluster:[Ru3 (μ-H)(μ3-κ2-Haminox-N, N)(CO) 9]. In Journal of Physics: Conference Series (Vol. 1032, No. 1, p. 012068). IOP Publishing.

Al-Ibadi, M. (2020). A Theoretical Investigation on Chemical Bonding of the Bridged Hydride Triruthenium Cluster:[Ru3 (μ-H)(μ3-κ2-Hamphox-N, N)(CO) 9]. Baghdad Science Journal17(2), 0488-0488.

Bader, R. F. (1985). Atoms in molecules. Accounts of chemical research18(1), 9-15.

Bader, R. F., & Essén, H. (1984). The characterization of atomic interactions. The Journal of chemical physics80(5), 1943-1960.

Capon, J. F., Gloaguen, F., Pétillon, F. Y., Schollhammer, P., & Talarmin, J. (2009). Electron and proton transfers at diiron dithiolate sites relevant to the catalysis of proton reduction by the [FeFe]-hydrogenases. Coordination Chemistry Reviews253(9-10), 1476-1494.

Dikhtiarenko, A., Khainakov, S., García, J. R., & Gimeno, J. (2017). Mixed-valence μ3-oxo-centered triruthenium cluster [Ru3 (II, III, III)(μ3-O)(μ-CH3CO2) 6 (H2O) 3]· 2H2O: Synthesis, structural characterization, valence-state delocalization and catalytic behavior. Inorganica Chimica Acta454, 107-116.

Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., & Fox, D. J. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA.

Ghosh, S., & Hogarth, G. (2017). Trinuclear clusters containing 2-aminopyridinate/pyrimidinate ligands as electrocatalysts for proton reduction. Journal of Organometallic Chemistry851, 57-67.

Ghosh, S., Basak-Modi, S., Richmond, M. G., Nordlander, E., & Hogarth, G. (2018). Electrocatalytic proton reduction by thiolate-capped triiron clusters [Fe3 (CO) 9 (μ3-SR)(μ-H)](R= iPr, tBu). Inorganica Chimica Acta480, 47-53.

Ghosh, S., Holt, K. B., Kabir, S. E., Richmond, M. G., & Hogarth, G. (2015). Electrocatalytic proton reduction catalysed by the low-valent tetrairon-oxo cluster [Fe 4 (CO) 10 (κ 2-dppn)(μ 4-O)] 2−[dppn= 1, 1′-bis (diphenylphosphino) naphthalene]. Dalton Transactions44(11), 5160-5169.

Hehre, W. J. (2003). A guide to molecular mechanics and quantum chemical calculations (Vol. 2). Irvine, CA: Wavefunction.

Johnson, B. F., Lewis, J., Raithby, P. R., & Süss, G. (1979). The triruthenium cluster anion [Ru 3 H (CO) 11]–: preparation, structure, and fluxionality. Journal of the Chemical Society, Dalton Transactions, (9), 1356-1361.

Lepetit, C., Fau, P., Fajerwerg, K., Kahn, M. L., & Silvi, B. (2017). Topological analysis of the metal-metal bond: A tutorial review. Coordination Chemistry Reviews345, 150-181.

Nielsen, M. T., Padilla, R., & Nielsen, M. (2020). Homogeneous catalysis by organometallic polynuclear clusters. Journal of Cluster Science31, 11-61.

Py, B., Moreau, P. L., & Barras, F. (2011). Fe–S clusters, fragile sentinels of the cell. Current opinion in microbiology14(2), 218-223.

Rahaman, A., Lisensky, G. C., Tocher, D. A., Richmond, M. G., Hogarth, G., & Nordlander, E. (2018). Synthesis and molecular structures of the 52-electron triiron telluride clusters [Fe3 (CO) 8 (μ3-Te) 2 (κ2-diphosphine)]-Electrochemical properties and activity as proton reduction catalysts. Journal of Organometallic Chemistry867, 381-390.

Richmond, M. G. (2003). Annual survey of organometallic metal cluster chemistry for the year 2001. Coordination chemistry reviews241(1-2), 273-294.

Richmond, M. G. (2004). Annual survey of organometallic metal cluster chemistry for the year 2002. Coordination chemistry reviews248(9-10), 881-901.

Rickard, D., & Luther, G. W. (2007). Chemistry of iron sulfides. Chemical reviews107(2), 514-562.

Silvi, B., Fourré, I., & Alikhani, M. E. (2005). The topological analysis of the electron localization function. A key for a position space representation of chemical bonds. Monatshefte für Chemie/Chemical Monthly136, 855-879.

Sourisseau, C., Cavagnat, R., & Fouassier, M. (1991). The vibrational properties and valence force fields of FeS2, RuS2 pyrites and FeS2 marcasite. Journal of Physics and Chemistry of Solids52(3), 537-544.

Stiefel, E. I. (1998). Transition metal sulfur chemistry and its relevance to molybdenum and tungsten enzymes. Pure and applied chemistry70(4), 889-896.

Tard, C., & Pickett, C. J. (2009). Structural and functional analogues of the active sites of the [Fe]-,[NiFe]-, and [FeFe]-hydrogenases. Chemical reviews109(6), 2245-2274.

Volbeda, A., Charon, M. H., Piras, C., Hatchikian, E. C., Frey, M., & Fontecilla-Camps, J. C. (1995). Crystal structure of the nickel–iron hydrogenase from Desulfovibrio gigas. Nature373(6515), 580-587.

Volbeda, A., Garcin, E., Piras, C., de Lacey, A. L., Fernandez, V. M., Hatchikian, E. C. & Fontecilla-Camps, J. C. (1996). Structure of the [NiFe] hydrogenase active site: evidence for biologically uncommon Fe ligands. Journal of the American Chemical Society118(51), 12989-12996.

Wadt, W. R., & Hay, P. J. (1985). Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. The Journal of chemical physics82(1), 284-298.

Xu, X. M., & Møller, S. G. (2011). Iron–sulfur clusters: biogenesis, molecular mechanisms, and their functional significance. Antioxidants & redox signaling15(1), 271-307.

Zhang, Y., & Yang, W. (1998). Comment on “Generalized gradient approximation made simple”. Physical Review Letters80(4), 890.

How to cite this article

Alhimidi, S. R. H. (2023). Electronic structure study of clusters containing triiron metal atoms: QTAIM Approach. Science Archives, Vol. 4(3), 221-225. https://doi.org/10.47587/SA.2023.4307

Licence                  Article Metadata

This work is licensed under a Creative Commons Attribution 4.0 International License.

[pdf_attachment file="1" name="View Details"]