Raghad Hazem Hamad Al-Abbasi 1, Marwa T. Ahmed  2, Zeyad Taha Hussein  3 and Mohammed Ahmed Mustafa 4*

 1,4Department of Pathological Analysis, College of Applied Sciences, University of Samarra, Iraq

2Department of Microbiology, College of Medicine, University of Tikrit, Iraq

3Department of Microbiology, College of Veterinary medicine, University of Tikrit, Iraq

4Department of Medical Laboratory Techniques, College of Technology, University of Imam Jafar Al-Sadiq Dujail

*Corresponding author: mohammed.alsad3@gmail.com

Received:  May 15, 2021 / Revised: June 18, 2021/ Accepted: June 29, 2021

Abstract

Uterine leiomyomas, also called uterine fibroids or myomas, represent one of the most common benign tumor types in women of fertile age. Leiomyomas arise due to the transformation of the layer of smooth muscle cells of corpus uteri – themyometrium. Despite the frequent occurrence of this disease, the molecular mechanisms behind the origin and development of leiomyomas are still relatively unknown. Genetic factors also have an important impact on the development of these hormone-dependent tumors. However, the clinical and molecular characteristics of familiar and sporadicleiomyomas can widely differ. The main reason is the heterogeneity of this disease and the abundance of factors that can underlie their tumourigenesis. Clinical diagnosis of uterine leiomyomas without surgical interference can be hindered in the case of small, mostly submucosal leiomyomas or if it is necessary to avoid potential malignancy of the tumor. The main goal of this article is to summarize known facts about the etiology of leiomyomas and knowing molecular-genetic aberrations connected with the presence of leiomyomas.

Keywords  Leiomyomas, uterine fibroids, tumourigenesis

How to cite this article:

Al-Abbasi, R. H. H., Ahmed, M. T., Hussein, Z. T. and Mustafa, M. A. (2021). Molecular Effect of Leiomyomas. Science Archives, Vol. 2 (2), 115-119.    http://dx.doi.org/10.47587/SA.2021.2210

References

Arita, S., Kikkawa, F., Kajiyama, H., Shibata, K., Kawai, M., Mizuno, K., & Nomura, S. (2005). Prognostic importance of vascular endothelial growth factor and its receptors in the uterine sarcoma. International Journal of Gynecologic Cancer15(2).

Arslan, A. A., Gold, L. I., Mittal, K., Suen, T. C., Belitskaya-Levy, I., Tang, M. S., & Toniolo, P. (2005). Gene expression studies provide clues to the pathogenesis of uterine leiomyoma: new evidence and a systematic review. Human reproduction20(4), 852-863.

Baird, D. D., Dunson, D. B., Hill, M. C., Cousins, D., & Schectman, J. M. (2003). High cumulative incidence of uterine leiomyoma in black and white women: ultrasound evidence. American journal of obstetrics and gynecology188(1), 100-107.

Bertsch, E., Qiang, W., Zhang, Q., Espona-Fiedler, M., Druschitz, S., Liu, Y., & Wei, J. J. (2014). MED12 and HMGA2 mutations: two independent genetic events in uterine leiomyoma and leiomyosarcoma. Modern pathology27(8), 1144-1153.

Cha, P. C., Takahashi, A., Hosono, N., Low, S. K., Kamatani, N., Kubo, M., & Nakamura, Y. (2011). A genome-wide association study identifies three loci associated with susceptibility to uterine fibroids. Nature genetics43(5), 447-450.

Chang, L., Rao, N., Bernthal, N., Dry, S. M., & James, A. W. (2015). An unusual karyotype in leiomyoma: Case report and literature review. Journal of orthopaedics12, S251-S254.

Date, O., Katsura, M., Ishida, M., Yoshihara, T., Kinomura, A., Sueda, T., & Miyagawa, K. (2006). Haploinsufficiency of RAD51B causes centrosome fragmentation and aneuploidy in human cells. Cancer research66(12), 6018-6024.

Eggert, S. L., Huyck, K. L., Somasundaram, P., Kavalla, R., Stewart, E. A., Lu, A. T., & Morton, C. C. (2012). Genome-wide linkage and association analyses implicate FASN in predisposition to uterine leiomyomata. The American Journal of Human Genetics91(4), 621-628.

Fusco, A., & Fedele, M. (2007). Roles of HMGA proteins in cancer. Nature Reviews Cancer7(12), 899-910.

Garavelli, L., Piemontese, M. R., Cavazza, A., Rosato, S., Wischmeijer, A., Gelmini, C., & Superti‐Furga, A. (2013). Multiple tumor types including leiomyoma and Wilms tumor in a patient with Gorlin syndrome due to 9q22. 3 microdeletion encompassing the PTCH1 and FANC‐C loci. American Journal of Medical Genetics Part A161(11), 2894-2901.

Gross, K. L., Neskey, D. M., Manchanda, N., Weremowicz, S., Kleinman, M. S., Nowak, R. A., … & Morton, C. C. (2003). HMGA2 expression in uterine leiomyomata and myometrium: quantitative analysis and tissue culture studies. Genes, Chromosomes and Cancer38(1), 68-79.

Gupta, S., Jose, J., & Manyonda, I. (2008). Clinical presentation of fibroids. Best practice & research Clinical obstetrics & gynaecology22(4), 615-626.

Hancock, E., Tomkins, S., Sampson, J., & Osborne, J. (2002). Lymphangioleiomyomatosis and tuberous sclerosis. Respiratory medicine96(1), 7-13.

Hulsebos, T. J., Kenter, S., Siebers-Renelt, U., Hans, V., Wesseling, P., & Flucke, U. (2014). SMARCB1 involvement in the development of leiomyoma in a patient with schwannomatosis. The American journal of surgical pathology38(3), 421-425.

Ingraham, S. E., Lynch, R. A., Kathiresan, S., Buckler, A. J., & Menon, A. G. (1999). hREC2, a RAD51-like gene, is disrupted by t (12; 14)(q15; q24. 1) in a uterine leiomyoma. Cancer genetics and cytogenetics115(1), 56-61.

Klemke, M., Meyer, A., Nezhad, M. H., Bartnitzke, S., Drieschner, N., Frantzen, C., & Bullerdiek, J. (2009). Overexpression of HMGA2 in uterine leiomyomas points to its general role for the pathogenesis of the disease. Genes, Chromosomes and Cancer48(2), 171-178.

Kogan, E. A., Ignatova, V. E., Rukhadze, T. N., Kudrina, E. A., & Ischenko, A. I. (2005). A role of growth factors in development of various histological types of uterine leiomyoma. Arkhiv patologii67(3), 34.

Lehtonen, H. J. (2011). Hereditary leiomyomatosis and renal cell cancer: update on clinical and molecular characteristics. Familial cancer10(2), 397-411.

Mäkinen, N., Mehine, M., Tolvanen, J., Kaasinen, E., Li, Y., Lehtonen, H. J., & Aaltonen, L. A. (2011). MED12, the mediator complex subunit 12 gene, is mutated at high frequency in uterine leiomyomas. Science334(6053), 252-255.

Markowski, D. N., Bartnitzke, S., Löning, T., Drieschner, N., Helmke, B. M., & Bullerdiek, J. (2012). MED12 mutations in uterine fibroids—their relationship to cytogenetic subgroups. International journal of cancer131(7), 1528-1536.

McGuire, M. M., Yatsenko, A., Hoffner, L., Jones, M., Surti, U., & Rajkovic, A. (2012). Whole exome sequencing in a random sample of North American women with leiomyomas identifies MED12 mutations in majority of uterine leiomyomas. PloS one7(3), e33251.

Mehine, M., Kaasinen, E., Mäkinen, N., Katainen, R., Kämpjärvi, K., Pitkänen, E., & Aaltonen, L. A. (2013). Characterization of uterine leiomyomas by whole-genome sequencing. New England Journal of Medicine369(1), 43-53.

Moore, S. D., Herrick, S. R., Ince, T. A., Kleinman, M. S., Dal Cin, P., Morton, C. C., & Quade, B. J. (2004). Uterine leiomyomata with t (10; 17) disrupt the histone acetyltransferase MORF. Cancer research64(16), 5570-5577.

Norian, J. M., Malik, M., Parker, C. Y., Joseph, D., Leppert, P. C., Segars, J. H., & Catherino, W. H. (2009). Transforming growth factor β3 regulates the versican variants in the extracellular matrix-rich uterine leiomyomas. Reproductive sciences16(12), 1153-1164.

Perot, G., Croce, S., Ribeiro, A., Lagarde, P., Velasco, V., Neuville, A., & Chibon, F. (2012). MED12 alterations in both human benign and malignant uterine soft tissue tumors. PloS one7(6), e40015.

Rampazzo, A. (2006). Genetic bases of arrhythmogenic right ventricular cardiomyopathy. Heart international2(1), 17–26.

Rein, M. S., Friedman, A. J., Barbieri, R. L., Pavelka, K., Fletcher, J. A., & Morton, C. C. (1991). Cytogenetic abnormalities in uterine leiomyomata. Obstetrics and gynecology77(6), 923-926.

Ren, Y., Yin, H., Tian, R., Cui, L., Zhu, Y., Lin, W., … & Zheng, X. L. (2011). Different effects of epidermal growth factor on smooth muscle cells derived from human myometrium and from leiomyoma. Fertility and sterility96(4), 1015-1020.

Sandberg, A. A. (2005). Updates on the cytogenetics and molecular genetics of bone and soft tissue tumors: leiomyoma. Cancer genetics and cytogenetics158(1), 1-26.

Sankaran, S., & Manyonda, I. T. (2008). Medical management of fibroids. Best Practice & Research Clinical Obstetrics & Gynaecology22(4), 655-676.

Schoenmakers, E. F., Huysmans, C., & Van de Ven, W. J. (1999). Allelic knockout of novel splice variants of human recombination repair gene RAD51B in t (12; 14) uterine leiomyomas. Cancer research59(1), 19-23.

Skubitz, K. M., & Skubitz, A. P. (2003). Differential gene expression in uterine leiomyoma. Journal of laboratory and clinical medicine141(5), 297-308.

Sornberger, K. S., Weremowicz, S., Williams, A. J., Quade, B. J., Ligon, A. H., Pedeutour, F.,  & Morton, C. C. (1999). Expression of HMGIY in three uterine leiomyomata with complex rearrangements of chromosome 6. Cancer genetics and cytogenetics114(1), 9-16.

Tomlinson, I. P., Alam, N. A., Rowan, A. J., Barclay, E., Jaeger, E. E., Kelsell, D., & Hearle, N. (2002). Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer. Nature genetics30(4), 406.

Uliana, V., Marcocci, E., Mucciolo, M., Meloni, I., Izzi, C., Manno, C., & Salviati, L. (2011). Alport syndrome and leiomyomatosis: the first deletion extending beyond COL4A6 intron 2. Pediatric Nephrology26(5), 717-724.

Vanni, R., Van Roy, N., Lecca, U., & Speleman, F. (1992). Uterine leiomyoma cytogenetics: III. Interphase cytogenetic analysis of karyotypically normal uterine leiomyoma excludes possibility of undetected trisomy 12. Cancer genetics and cytogenetics62(1), 40-42.

Velagaleti, G. V., Tonk, V. S., Hakim, N. M., Wang, X., Zhang, H., Erickson-Johnson, M. R., … & Oliveira, A. M. (2010). Fusion of HMGA2 to COG5 in uterine leiomyoma. Cancer genetics and cytogenetics202(1), 11-16.

Waite, K. A., & Eng, C. (2002). Protean PTEN: form and function. The American Journal of Human Genetics70(4), 829-844.

Wise, L. A., Ruiz-Narvaez, E. A., Palmer, J. R., Cozier, Y. C., Tandon, A., Patterson, N., … & Reich, D. (2012). African ancestry and genetic risk for uterine leiomyomata. American journal of epidemiology176(12), 1159-1168.

Wu, X., Blanck, A., Norstedt, G., Sahlin, L., & Flores-Morales, A. (2002). Identification of genes with higher expression in human uterine leiomyomas than in the corresponding myometrium. MHR: Basic science of reproductive medicine8(3), 246-254.

Zhang, K., Wiener, H., & Aissani, B. (2015). Admixture mapping of genetic variants for uterine fibroids. Journal of human genetics60(9), 533-538.

Licence                  Article Metadata

This work is licensed under a Creative Commons Attribution 4.0 International License.

View Details