Hanya Khalid Al-Hayani and Omar Abdulazeez Alhamd

Department of Life Sciences, College of Education for Pure Sciences, University of Mosul, Mosul, Iraq

Received: Apr 10, 2023/ Revised: May 4, 2023/ Accepted: May 6 , 2023

DOI: https://doi.org/10.47587/SA.2023.4207

(✉) Corresponding Author: hanya.20esp45@student.uomosul.edu.iq

Abstract

This study included testing the production of  Rhizobia isolates for external polysaccharides, and the isolates showed mixed results among them, as some isolates outperformed others in the rate of production, and also tested the effect of titanium dioxide on the production of exopolysaccharides for Rhizobia isolates, and the results showed that nanomaterials have an effect There was a significant increase in the rate of production of exopolysaccharide, while the higher the concentration, the rate of production decreased significantly. The size and shape of the nanoparticles were diagnosed using SEM examination and visible spectroscopy to ensure that the nanoparticles of dioxide are within the nanoscales.

Keywords: Rhizobium, exopolysaccharides, titanium dioxide nanoparticles

References

Abd-Alla, M. H., Nafady, N. A., & Khalaf, D. M. (2016). Assessment of silver nanoparticles contamination on faba bean-Rhizobium leguminosarum bv. viciae-Glomus aggregatum symbiosis: Implications for induction of autophagy process in root nodule. Agriculture, Ecosystems & Environment218, 163-177.

Alfuraydi, Akram A; Al-Ansari, M., Alkubaisi, N., Gopinath, K., Karthika, V., Arumugam, A., & Govindarajan, M. (2019). Facile and cost-effective Ag nanoparticles fabricated by lilium lancifolium leaf extract: Antibacterial and antibiofilm potential. Journal of Cluster Science30, 1081-1089.

Andrews, M., & Andrews, M. E. (2017). Specificity in legume-rhizobia symbioses. International journal of molecular sciences18(4), 705.

Baqer, S. R., Alsammarraie, A. M. A., Alias, M., Al-Halbosiy, M. M., & Sadiq, A. S. (2020). In Vitro Cytotoxicity Study of Pt Nanoparticles Decorated TiO2 Nanotube Array. cancer17(4), 1169-1176.

Colvin, V. (2003). Responsible nanotechnology: Looking beyond the good news. www. eurekalert. org.

Dieltjens, L., Appermans, K., Lissens, M., Lories, B., Kim, W., Van der Eycken, E. V., … & Steenackers, H. P. (2020). Inhibiting bacterial cooperation is an evolutionarily robust anti-biofilm strategy. Nature Communications11(1), 107.

Dorobantu, L. S., Fallone, C., Noble, A. J., Veinot, J., Ma, G., Goss, G. G., & Burrell, R. E. (2015). Toxicity of silver nanoparticles against bacteria, yeast, and algae. Journal of nanoparticle research17, 1-13.

Dubey, R. C., & DK, M. (2002). A Textbook of Practical Microbiology. S. Chand & Co. Ltd, Ram Nagar, Newdelhi1, 2-192.

Durairaj, B., Xavier, T., & Muthu, S. (2014). Fungal-generated titanium dioxide nanoparticles for UV Protective and bacterial-resistant fabrication. International Journal of Engineering Science and Technology6(9), 621.

Duta F. P., Pessôa de França, F., & de Almeida Lopes, L. M. (2006). Optimization of culture conditions for exopolysaccharides production in Rhizobium sp. using the response surface method. Electronic Journal of Biotechnology9(4), 0-0.

Fan, R., Huang, Y. C., Grusak, M. A., Huang, C. P., & Sherrier, D. J. (2014). Effects of nano-TiO2 on the agronomically-relevant Rhizobium–legume symbiosis. Science of the Total Environment466, 503-512.

Fraysse, N., Couderc, F., & Poinsot, V. (2003). Surface polysaccharide involvement in establishing the rhizobium–legume symbiosis. European Journal of Biochemistry270(7), 1365-1380.

Ghosh, A. C., & Basu, P. S. (2001). Extracellular polysaccharide production by Azorhizobium caulinodans from stem nodules of leguminous emergent hydrophyte Aeschynomene aspera.

Gomaa, I. E., Abdel Gaber, S. A., Bhatt, S., Liehr, T., Glei, M., El-Tayeb, T. A., & Abdel-Kader, M. H. (2015). In vitro cytotoxicity and genotoxicity studies of gold nanoparticles-mediated photo-thermal therapy versus 5-fluorouracil. Journal of Nanoparticle Research17, 1-11.

Graciani, J., Hamad, S., & Sanz, J. F. (2009). Changing the physical and chemical properties of titanium oxynitrides TiN 1− x O x by changing the composition. Physical Review B80(18), 184112.

Gu, W., & Milton, R. D. (2020). Natural and engineered electron transfer of nitrogenase. Chemistry2(2), 322-346.

Heidari Khoee, M., Khoee, S., & Lotfi, M. (2019). Synthesis of titanium dioxide nanotubes with liposomal covers for carrying and extended release of 5-FU as anticancer drug in the treatment of HeLa cells. Analytical biochemistry572, 16-24.

Islam, Z. A., Mondal, S., & Islam, M. (2017). Applications, synthesis and characterization of gold nano particles (Doctoral dissertation, BRAC Univeristy).

Kaur, H., Kalia, A., & Sharma, S. P. (2021). Multi-Wall Carbon Nanotubes, Metal Oxide and Hydroxy-Apatite Nanoparticles Enhanced Plant Growth Promoting Capabilities of Root Endosymbionts of Cowpea (Vigna unguiculata (L.) Walp.). Journal of Nanoscience and Nanotechnology21(6), 3634-3649.

Khanuja, S. S., & Kumar, S. (1988). Isolation of phages of Rhizobium meliloti AK631. Indian journal of experimental biology26(9), 665-667.

Kumari, B. S., Ram, M. R., & Mallaiah, K. V. (2009). Studies on exopolysaccharide and indole acetic acid production by Rhizobium strains from Indigofera. African Journal of Microbiology Research3(1), 10-14.

Lepek, V. C., & D’Antuono, A. L. (2005). Bacterial surface polysaccharides and their role in the rhizobia-legume association. Lotus Newslett35, 93-105.

Mohite, B. V., Koli, S. H., Narkhede, C. P., Patil, S. N., & Patil, S. V. (2017). Prospective of microbial exopolysaccharide for heavy metal exclusion. Applied biochemistry and biotechnology183, 582-600.

Navarini, L., Stredansky, M., Matulova, M., & Bertocchi, C. (1997). Production and characterization of an exopolysaccharide from Rhizobium hedysari HCNT 1. Biotechnology letters19(12), 1231-1234.

Oldroyd, G. E., Murray, J. D., Poole, P. S., & Downie, J. A. (2011). The rules of engagement in the legume-rhizobial symbiosis. Annual review of genetics45, 119-144.

Oves, M., Khan, M. S., Zaidi, A., Ahmed, A. S., & Azam, A. (2014). Production of plant-growth promoting substances by nodule forming symbiotic bacterium rhizobium sp. Os1 is influenced by cuo, zno and fe^ sub 2^ o^ sub 3^ nanoparticles. The IIOAB Journal5(4), 1.

Primo, E. D., Cossovich, S., Nievas, F., Bogino, P., Humm, E. A., Hirsch, A. M., & Giordano, W. (2020). Exopolysaccharide production in Ensifer meliloti laboratory and native strains and their effects on alfalfa inoculation. Archives of microbiology202, 391-398.

Roy, S., Liu, W., Nandety, R. S., Crook, A., Mysore, K. S., Pislariu, C. I. & Udvardi, M. K. (2020). Celebrating 20 years of genetic discoveries in legume nodulation and symbiotic nitrogen fixation. The Plant Cell32(1), 15-41.

Saranya, K. S., Vellora Thekkae Padil, V., Senan, C., Pilankatta, R., Saranya, K., George, B., … & Černík, M. (2018). Green synthesis of high temperature stable anatase titanium dioxide nanoparticles using gum kondagogu: characterization and solar driven photocatalytic degradation of organic dye. Nanomaterials8(12), 1002.

Shakeel, M., Jabeen, F., Shabbir, S., Asghar, M. S., Khan, M. S., & Chaudhry, A. S. (2016). Toxicity of nano-titanium dioxide (TiO 2-NP) through various routes of exposure: a review. Biological trace element research172, 1-36.

Sivasankar, P., Seedevi, P., Poongodi, S., Sivakumar, M., Murugan, T., Sivakumar, L. & Balasubramanian, T. (2018). Characterization, antimicrobial and antioxidant properties of exopolysaccharide mediated silver nanoparticles synthesized by Streptomyces violaceus MM72. Carbohydrate polymers, 181, 752-759.

Wu, B., Huang, R., Sahu, M., Feng, X., Biswas, P., & Tang, Y. J. (2010). Bacterial responses to Cu-doped TiO2 nanoparticles. Science of the total environment, 408(7), 1755-1758.

Yang, J., Xie., Tian, Z., Dixon, R. and W. Y. (2018). Polyprotein strategy for stoichiometric assembly of nitrogen fixation components roar synthetic biology. pans., 115(36): 8509-5817.

How to cite this article

Al-Hayani, H. K. and Alhamd, O. A. (2023). Effect of titanium dioxide nanoparticles on the polysaccharides of Rhizobium isolates. Science Archives, Vol. 3(2), 106-111. https://doi.org/10.47587/SA.2023.4207

Licence                  Article Metadata

This work is licensed under a Creative Commons Attribution 4.0 International License.

                                                                                                                                                                                                                                      

View Details