Diptendu Sarkar¹✉ and Kamalesh Das²
¹Department of Microbiology, Ramakrishna Mission Vidyamandira, Belur Math, Howrah-711202, West Bengal, India
²Department of Physiology, Uluberia College, Uluberia, Howrah-711315, West Bengal, India
Received: May 26, 2023/ Revised: June 24, 2023/Accepted: June 25, 2023
(✉) Corresponding Author: diptendu81@gmail.com
Abstract
Type 1 diabetes, which is insulin-dependent, is the most common autoimmune illness in children. It even can cause mortality in young adults. Genetic, epigenetic, as well as external factors all have the potential to influence this illness. This condition may be brought on by a major alteration in the composition of the intestinal microbiota. Recent study data on those with Type 1 diabetes along with additional animal specimens lends more credence to the idea that variations in the overall makeup of the gut microbiome precede the onset of the condition. In this instance our focus is on the correlation underlying alterations in the makeup of the microbiota in the intestines and the onset of Type 1 diabetes, as well as any potential biological causes of this occurrence and evidence-based measures that might be taken to avoid it.
Keywords: Diet, Autoimmune Illness, GUT Microbiota, Immune System, Type 1 Diabetes.
References
Altveş, S., Yildiz, H. K., & Vural, H. C. (2020). Interaction of the microbiota with the human body in health and diseases. Bioscience of Microbiota, Food and Health, 39(2), 23–32.
https://doi.org/10.12938/bmfh.19-023
American Diabetes Association. Classification and diagnosis of diabetes: standards of medical care in diabetes – (2020). Diabetes Care. 43(Suppl. 1): S14–31.
https://doi.org/10.2337/dc20-S002.
Andraos, S., Lange, K., Clifford, S. A., Jones, B., Thorstensen, E. B., Kerr, J. A., O’Sullivan, J. M. (2020). Plasma Trimethylamine N-Oxide and Its Precursors: Population Epidemiology, Parent–Child Concordance, and Associations with Reported Dietary Intake in 11- to 12-Year-Old Children and Their Parents. Current Developments in Nutrition, 4(7), nzaa103.
https://doi.org/10.1093/cdn/nzaa103
Aoki, R., Kamikado, K., Suda, W., Takii, H., Mikami, Y., Suganuma, N., . . . Koga, Y. (2017). A proliferative probiotic Bifidobacterium strain in the gut ameliorates progression of metabolic disorders via microbiota modulation and acetate elevation. Scientific Reports, 7(1).
https://doi.org/10.1038/srep43522
Clarke, G., Sandhu, K. V., Griffin, B. T., Dinan, T. G., Cryan, J. F., & Hyland, N. P. (2019). Gut Reactions: Breaking Down Xenobiotic–Microbiome Interactions. Pharmacological Reviews, 71(2), 198–224.
https://doi.org/10.1124/pr.118.015768
Cryan, J. F., O’Riordan, K. J., Cowan, C. S. M., Sandhu, K. V., Bastiaanssen, T. F. S., Boehme, M., . . . Dinan, T. G. (2019). The Microbiota-Gut-Brain Axis. Physiological Reviews, 99(4), 1877–2013.
https://doi.org/10.1152/physrev.00018.2018
Ferris, S. T., Zakharov, P. N., Wan, X., Calderon, B., Artyomov, M. N., Unanue, E. R., & Carrero, J. A. (2017). The islet-resident macrophage is in an inflammatory state and senses microbial products in blood. Journal of Experimental Medicine, 214(8), 2369–2385.
https://doi.org/10.1084/jem.20170074
Fujio-Vejar, S., Vasquez, Y., Morales, P., Magne, F., Vera-Wolf, P., Ugalde, J. A., Gotteland, M. (2017). The Gut Microbiota of Healthy Chilean Subjects Reveals a High Abundance of the Phylum Verrucomicrobia. Frontiers in Microbiology, 8.
https://doi.org/10.3389/fmicb.2017.01221
Galle-Treger, L., Sankaranarayanan, I., Hurrell, B. P., Howard, E., Lo, R., Maazi, H., Akbari, O. (2019). Costimulation of type-2 innate lymphoid cells by GITR promotes effector function and ameliorates type 2 diabetes. Nature Communications, 10(1).
https://doi.org/10.1038/s41467-019-08449-x
Gomes, J. M. G., Costa, J. D. A., & Alfenas, R. D. C. G. (2017). Metabolic endotoxemia and diabetes mellitus: A systematic review. Metabolism, 68, 133–144.
https://doi.org/10.1016/j.metabol.2016.12.009
Hasain, Z., Mokhtar, N. M., Kamaruddin, N. A., Mohamed Ismail, N. A., Razalli, N. H., Gnanou, J. V., & Raja Ali, R. A. (2020). Gut Microbiota and Gestational Diabetes Mellitus: A Review of Host-Gut Microbiota Interactions and Their Therapeutic Potential. Frontiers in Cellular and Infection Microbiology, 10.
https://doi.org/10.3389/fcimb.2020.00188
Hidalgo-Cantabrana, C., Delgado, S., Ruiz, L., Ruas-Madiedo, P., Sánchez, B., & Margolles, A. (2017). Bifidobacteria and Their Health-Promoting Effects. Microbiology Spectrum, 5(3).
https://doi.org/10.1128/microbiolspec.bad-0010-2016
Jergens, A. E., Guard, B. C., Redfern, A., Rossi, G., Mochel, J. P., Pilla, R., Suchodolski, J. (2019). Microbiota-Related Changes in Unconjugated Fecal Bile Acids Are Associated With Naturally Occurring, Insulin-Dependent Diabetes Mellitus in Dogs. Frontiers in Veterinary Science, 6.
https://doi.org/10.3389/fvets.2019.00199
Karuranga, S., Malanda, B., Saeedi, P. and Salpea, P. (2019). (Eds.) IDF Diabetes Atlas, 9th Edition Committee IDF DIABETES ATLAS: Brussels, Belgium, 2019; ISBN.
Kieser, K. J., & Kagan, J. C. (2017). Multi-receptor detection of individual bacterial products by the innate immune system. Nature Reviews Immunology, 17(6), 376–390.
https://doi.org/10.1038/nri.2017.25
Kim, C. (2016). B cell-helping functions of gut microbial metabolites. Microbial Cell, 3(10), 529–531.
https://doi.org/10.15698/mic2016.10.536
Kim, M., Qie, Y., Park, J., & Kim, C. (2016). Gut Microbial Metabolites Fuel Host Antibody Responses. Cell Host & Microbe, 20(2), 202–214.
https://doi.org/10.1016/j.chom.2016.07.001
Knip, M., & Honkanen, J. (2017). Modulation of Type 1 Diabetes Risk by the Intestinal Microbiome. Current Diabetes Reports, 17(11).
https://doi.org/10.1007/s11892-017-0933-9
Komaroff, A. L. (2017). The Microbiome and Risk for Obesity and Diabetes. JAMA, 317(4), 355.
https://doi.org/10.1001/jama.2016.20099
Li, W. Z., Stirling, K., Yang, J. J., & Zhang, L. (2020). Gut microbiota and diabetes: From correlation to causality and mechanism. World Journal of Diabetes, 11(7), 293–308.
https://doi.org/10.4239/wjd.v11.i7.293
Louis, P., & Flint, H. J. (2016). Formation of propionate and butyrate by the human colonic microbiota. Environmental Microbiology, 19(1), 29–41.
https://doi.org/10.1111/1462-2920.13589
Lucier, J. and Weinstock, R. S. (2022). Diabetes Mellitus Type 1. In Stat Pearls; StatPearls Publishing: Treasure Island, FL, USA.
Maffeis, C., Martina, A., Corradi, M., Quarella, S., Nori, N., Torriani, S., Felis, G. E. (2016). Association between intestinal permeability and faecal microbiota composition in Italian children with beta cell autoimmunity at risk for type 1 diabetes. Diabetes/Metabolism Research and Reviews, 32(7), 700–709.
https://doi.org/10.1002/dmrr.2790
Manchanayake, L. N. (2019). The Impact of Gut Microbiota on Host Obesity. Journal of Gastrointestinal & Digestive System, 09(01).
https://doi.org/10.4172/2161-069x.1000591
Marcelino, G., Hiane, P. A., Freitas, K. C., Santana, L. F., Pott, A. and Donadon, J. R. (2019). Effects of olive oil and its minor components on cardiovascular diseases, inflammation, and gut microbiota. Nutrients, 11:1826.
Mariño, E., Richards, J. L., McLeod, K. H., Stanley, D., Yap, Y. A., Knight, J., Mackay, C. R. (2017). Gut microbial metabolites limit the frequency of autoimmune T cells and protect against type 1 diabetes. Nature Immunology, 18(5), 552–562.
https://doi.org/10.1038/ni.3713
McCoy, K. D., Ronchi, F., & Geuking, M. B. (2017). Host‐microbiota interactions and adaptive immunity. Immunological Reviews, 279(1), 63–69.
https://doi.org/10.1111/imr.12575
Meroni, M., Longo, M., & Dongiovanni, P. (2019). Alcohol or Gut Microbiota: Who Is the Guilty? International Journal of Molecular Sciences, 20(18), 4568.
https://doi.org/10.3390/ijms20184568
Silverman, M., Kua, L., Tanca, A., Pala, M., Palomba, A., Tanes, C., Mathis, D. (2017). Protective major histocompatibility complex allele prevents type 1 diabetes by shaping the intestinal microbiota early in ontogeny. Proceedings of the National Academy of Sciences, 114(36), 9671–9676.
https://doi.org/10.1073/pnas.1712280114
Mishra, S. P., Karunakar, P., Taraphder, S., & Yadav, H. (2020). Free Fatty Acid Receptors 2 and 3 as Microbial Metabolite Sensors to Shape Host Health: Pharmacophysiological View. Biomedicines, 8(6), 154.
https://doi.org/10.3390/biomedicines8060154
Nerild, H. H., Christensen, M. B., Knop, F. K., & Brønden, A. (2018). Preclinical discovery and development of colesevelam for the treatment of type 2 diabetes. Expert Opinion on Drug Discovery, 13(12), 1161–1167.
https://doi.org/10.1080/17460441.2018.1538206
Nyavor, Y., Brands, C. R., May, G., Kuther, S., Nicholson, J., Tiger, K., . . . Balemba, O. B. (2020). High‐fat diet–induced alterations to gut microbiota and gut‐derived lipoteichoic acid contributes to the development of enteric neuropathy. Neurogastroenterology & Motility, 32(7).
https://doi.org/10.1111/nmo.13838
Ohira, H., Tsutsui, W., & Fujioka, Y. (2017). Are Short Chain Fatty Acids in Gut Microbiota Defensive Players for Inflammation and Atherosclerosis? Journal of Atherosclerosis and Thrombosis, 24(7), 660–672.
https://doi.org/10.5551/jat.rv17006
Oliveira, R., Canuto, L., & Collares-Buzato, C. (2019). Intestinal luminal content from high-fat-fed prediabetic mice changes epithelial barrier function in vitro. Life Sciences, 216, 10–21.
https://doi.org/10.1016/j.lfs.2018.11.012
Pasolli, E., Asnicar, F., Manara, S., Zolfo, M., Karcher, N., Armanini, F., Segata, N. (2019). Extensive Unexplored Human Microbiome Diversity Revealed by Over 150,000 Genomes from Metagenomes Spanning Age, Geography, and Lifestyle. Cell, 176(3), 649-662.e20.
https://doi.org/10.1016/j.cell.2019.01.001
Pingitore, A., Chambers, E. S., Hill, T., Maldonado, I. R., Liu, B., Bewick, G., Persaud, S. J. (2016). The diet‐derived short chain fatty acid propionate improves beta‐cell function in humans and stimulates insulin secretion from human islets in vitro. Diabetes, Obesity and Metabolism, 19(2), 257–265.
https://doi.org/10.1111/dom.12811
Prieto, I, Hidalgo, M, Segarra, A. B., Martínez-Rodríguez, A. M., Cobo, A. and Ramírez, M. (2018). Influence of a diet enriched with virgin olive oil or butter on mouse gut microbiota and its correlation to physiological and biochemical parameters related to metabolic syndrome. PLoS ONE. https://13: e0190368.10.1371/journal.pone.0190368.
Qi, J., You, T., Li, J., Pan, T., Xiang, L., Han, Y., & Zhu, L. (2017). Circulating trimethylamine N‐oxide and the risk of cardiovascular diseases: a systematic review and meta‐analysis of 11 prospective cohort studies. Journal of Cellular and Molecular Medicine, 22(1), 185–194.
https://doi.org/10.1111/jcmm.13307
Rajani, C., & Jia, W. (2018). Bile acids and their effects on diabetes. Frontiers of Medicine, 12(6), 608–623.
https://doi.org/10.1007/s11684-018-0644-x
Rukavina Mikusic, N. L., Kouyoumdzian, N. M., & Choi, M. R. (2020). Gut microbiota and chronic kidney disease: evidences and mechanisms that mediate a new communication in the gastrointestinal-renal axis. Pflügers Archiv – European Journal of Physiology, 472(3), 303–320.
https://doi.org/10.1007/s00424-020-02352-x
Sanchez-Rodriguez, E., Egea-Zorrilla, A., Plaza-Díaz, J., Aragón-Vela, J., Muñoz-Quezada, S., Tercedor-Sánchez, L., & Abadia-Molina, F. (2020). The Gut Microbiota and Its Implication in the Development of Atherosclerosis and Related Cardiovascular Diseases. Nutrients, 12(3), 605.
https://doi.org/10.3390/nu12030605
Sanna, S., van Zuydam, N. R., Mahajan, A., Kurilshikov, A., Vich Vila, A., Võsa, U., McCarthy, M. I. (2019). Causal relationships among the gut microbiome, short-chain fatty acids and metabolic diseases. Nature Genetics, 51(4), 600–605.
https://doi.org/10.1038/s41588-019-0350-x
Schoeler, M., & Caesar, R. (2019). Dietary lipids, gut microbiota and lipid metabolism. Reviews in Endocrine and Metabolic Disorders, 20(4), 461–472.
https://doi.org/10.1007/s11154-019-09512-0
Sharma, M., Li, Y., Stoll, M. L., & Tollefsbol, T. O. (2020). The Epigenetic Connection Between the Gut Microbiome in Obesity and Diabetes. Frontiers in Genetics, 10.
https://doi.org/10.3389/fgene.2019.01329
Sharma, S., & Tripathi, P. (2019). Gut microbiome and type 2 diabetes: where we are and where to go? The Journal of Nutritional Biochemistry, 63, 101–108.
https://doi.org/10.1016/j.jnutbio.2018.10.003
Takagi, T., Naito, Y., Inoue, R., Kashiwagi, S., Uchiyama, K., Mizushima, K., . . . Itoh, Y. (2018). Differences in gut microbiota associated with age, sex, and stool consistency in healthy Japanese subjects. Journal of Gastroenterology, 54(1), 53–63.
https://doi.org/10.1007/s00535-018-1488-5
Takahashi, D., Hoshina, N., Kabumoto, Y., Maeda, Y., Suzuki, A., Tanabe, H., . . . Hase, K. (2020). Microbiota-derived butyrate limits the autoimmune response by promoting the differentiation of follicular regulatory T cells. EBioMedicine, 58, 102913.
https://doi.org/10.1016/j.ebiom.2020.102913
Tosti, V., Bertozzi, B. and Fontana, L. (2018). Health benefits of the Mediterranean diet: metabolic and molecular mechanisms. The journals of gerontology. Series A, Biological sciences and medical sciences,73:318–26.
https://10.1093/gerona/glx227.
Valdes, A. M., Walter, J., Segal, E., & Spector, T. D. (2018). Role of the gut microbiota in nutrition and health. BMJ, k2179.
https://doi.org/10.1136/bmj.k2179
Veprik, A., Laufer, D., Weiss, S., Rubins, N., & Walker, M. D. (2016). GPR41 modulates insulin secretion and gene expression in pancreatic β‐cells and modifies metabolic homeostasis in fed and fasting states. The FASEB Journal, 30(11), 3860–3869.
https://doi.org/10.1096/fj.201500030r
Wahlström, A., Sayin, S., Marschall, H. U., & Bäckhed, F. (2016). Intestinal Crosstalk between Bile Acids and Microbiota and Its Impact on Host Metabolism. Cell Metabolism, 24(1), 41–50. https://doi.org/10.1016/j.cmet.2016.05.005
Yu, H., Gagliani, N., Ishigame, H., Huber, S., Zhu, S., Esplugues, E., Flavell, R. A. (2017). Intestinal type 1 regulatory T cells migrate to periphery to suppress diabetogenic T cells and prevent diabetes development. Proceedings of the National Academy of Sciences, 114(39), 10443–10448.
https://doi.org/10.1073/pnas.1705599114
Zhao, L., Zhang, F., Ding, X., Wu, G., Lam, Y. Y., Wang, X., Zhang, C. (2018). Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science, 359(6380), 1151–1156.
https://doi.org/10.1126/science.aao5774
Zhao, Z., Shi, A., Wang, Q., & Zhou, J. (2019). High Oleic Acid Peanut Oil and Extra Virgin Olive Oil Supplementation Attenuate Metabolic Syndrome in Rats by Modulating the Gut Microbiota. Nutrients, 11(12), 3005.
https://doi.org/10.3390/nu11123005
Zheng, S., Zhao, M., Wu, Y., Wang, Z., & Ren, Y. (2015). Suppression of pancreatic beta cell apoptosis by Danzhi Jiangtang capsule contributes to the attenuation of type 1 diabetes in rats. BMC Complementary and Alternative Medicine, 16(1).
https://doi.org/10.1186/s12906-016-0993-4
Zhou, H., Sun, L., Zhang, S., Zhao, X., Gang, X., & Wang, G. (2020). Evaluating the Causal Role of Gut Microbiota in Type 1 Diabetes and Its Possible Pathogenic Mechanisms. Frontiers in Endocrinology, 11.
https://doi.org/10.3389/fendo.2020.00125
Zhu, W., Winter, M. G., Byndloss, M. X., Spiga, L., Duerkop, B. A., Hughes, E. R., . . . Winter, S. E. (2018). Precision editing of the gut microbiota ameliorates colitis. Nature, 553(7687), 208–211.
https://doi.org/10.1038/nature25172
Zhuang, R., Ge, X., Han, L., Yu, P., Gong, X., Meng, Q., Zhou, X. (2019). Gut microbe–generated metabolite trimethylamine N‐oxide and the risk of diabetes: A systematic review and dose‐response meta‐analysis. Obesity Reviews, 20(6), 883–894.
https://doi.org/10.1111/obr.12843
How to cite this article
Sarkar, D. and Das, K. (2023). A review on involvement of gut microbiota in insulin dependent diabetes. Science Archives, Vol. 4(4), 255-263.
https://doi.org/10.47587/SA.2023.4403
License Article Metadata
This work is licensed under a Creative Commons Attribution 4.0 International License.