Muqdad Altae¹, Israa Salman Dalas²
¹Ministry of Education / Salah Al-din Directorate.
²Department of Biology – College of Education for Pure Science – University of Tikrit, Iraq
Muqdadaltae@yahoo.com; Israasalman85@gmail.com
Received: Oct 30, 2021 / Revised: Nov 20, 2021/ Accepted: Nov 27, 2021
Abstract
Fasciation (or cristation) is a morphological alteration in plant organs that involves widening of the shoot apical meristem, flattening of the stem, and changes in a leaf arrangement. A multitude of natural and manmade events can generate physiological fasciation. Insect assault, mechanical pressure and/or tension during growth in some species such as asparagus and liana species, and sowing time and density are all-natural environmental influences. One of the original seven Mendelian pairs of traits was the fasciated variety of Pisumsativum L. (formerly known as P. umbellatum; Synonyms: mummy pea, crown pea, poisturk, poiscoronne). In many species, it is genetically determined. FASCIATA is the name of the gene that causes fasciation to occur (FA). Because of the great level of control over the plant material and growth circumstances that in vitro produced fasciated plants provide, they can be useful models for investigating the causes and development of fasciation.
Keywords Fasciation, plants, roots, pisumsativum L.
How to cite this article
Altae, M. Dalas, I.S. (2021). Abnormal growth in the plant (fasciation). Science Archives, Vol. 2 (4) 339-342. http://dx.doi.org/10.47587/SA.2021.2412
Reference
Abe, K., Osakabe, K., Ishikawa, Y., Tagiri, A., Yamanouchi, H., Takyuu, T., … & Toki, S. (2009). Inefficient double-strand DNA break repair is associated with increased fasciation in Arabidopsis BRCA2 mutants. Journal of experimental botany, 60(9), 2751-2761.
Balotis, G., & Papafotiou, M. (2001, September). Micropropagation and stability of Euphorbia pugniformis cristate form. In I International Symposium on Acclimatization and Establishment of Micropropagated Plants 616 (pp. 471-474).
Bertaccini, A., Fránová, J., Botti, S., & Tabanelli, D. (2005). Molecular characterization of phytoplasmas in lilies with fasciation in the Czech Republic. FEMS microbiology letters, 249(1), 79-85.
Binggeli P (1990) Occurrence and causes of fasciation. Cecidology 5:57–62.
Chriqui, D. (2008) Developmental biology. In: George EF, Hall MA, De Klerk G-J (eds) Plant propagation by tissue culture, vol 1, 3rd edn. The background 283–334.
Clark, S. E. (2001). Cell signalling at the shoot meristem. Nature Reviews Molecular Cell Biology, 2(4), 276-284.
Ecole, D. (1970). Premieres observations sur la fasciation chez le Celosia cristata L.(Amarantacees). CR Acad Sci Paris, 270, 477-480.
Gorter, C.J. (1965) Origin of fasciation. In: Rhuland W (ed) Encyclopedia of plant physiology, vol 15(2). Springer, New York, pp 330–351.
Goyal, P., Chauhan, A., & Kaushik, P. (2009). Laboratory evaluation of crude extracts of Cinnamomum tamala for potential antibacterial activity. Electronic journal of Biology, 5(4), 75-79.
Graf, P., Dolzblasz, A., Würschum, T., Lenhard, M., Pfreundt, U., & Laux, T. (2010). MGOUN1 encodes an Arabidopsis type IB DNA topoisomerase required in stem cell regulation and to maintain developmentally regulated gene silencing. The Plant cell, 22(3), 716-728.
Green, K. A., Prigge, M. J., Katzman, R. B., & Clark, S. E. (2005). CORONA, a member of the class III homeodomain leucine zipper gene family in Arabidopsis, regulates stem cell specification and organogenesis. The Plant Cell, 17(3), 691-704.
Iliev, I., Scaltsoyiannes, A., Tsaktsira, M., & Gajdosova, A. (2008, May). Micropropagation of Betula pendula Roth cultivars by adventitious shoot induction from leaf callus. In I International Symposium on Woody Ornamentals of the Temperate Zone 885 (pp. 161-173).
Jambhulkar, S. J. (2002). Growth morphology and inheritance of fasciation mutation in sunflower. Journal of Genetics and Breeding, 56(4), 327-330.
Karakaya, H. C., Tang, Y., Cregan, P. B., & Knap, H. T. (2002). Molecular mapping of the fasciation mutation in soybean, Glycine max (Leguminosae). American journal of botany, 89(4), 559-565.
Kaushik, P., Goyal, P., Chauhan, A., & Chauhan, G. (2010). In vitro evaluation of antibacterial potential of dry fruitextracts of Elettaria cardamomum Maton (Chhoti Elaichi). Iranian journal of pharmaceutical research: IJPR, 9(3), 287.
Kienholz R (1932) Fasciation in red pine. Bot Gaz 94, 404–410.
Kitin, P., Iliev, I., Scaltsoyiannes, A., Nellas, C., Rubos, A., & Funada, R. (2005). A comparative histological study between normal and fasciated shoots of Prunus avium generated in vitro. Plant Cell, Tissue and Organ Culture, 82(2), 141-150.
Mccartan, S. A., & Van Staden, J. (2003). Micropropagation of the endangered Kniphofia leucocephala Baijnath. In Vitro Cellular & Developmental Biology-Plant, 39(5), 496-499.
Mitras, D., Kitin, P., Iliev, I., Dancheva, D., Scaltsoyiannes, A., Tsaktsira, M., … & Rohr, R. E. N. E. (2009). In vitro propagation of Fraxinus excelsior L. by epicotyls. J Biol Res-Thessaloniki, 11, 37-48.
Papafotiou, M., Balotis, G. N., Louka, P. T., & Chronopoulos, J. (2001). In vitro plant regeneration of Mammillaria elongata normal and cristate forms. Plant Cell, Tissue and Organ Culture, 65(2), 163-167.
Reinhardt, D., Frenz, M., Mandel, T., & Kuhlemeier, C. (2005). Microsurgical and laser ablation analysis of leaf positioning and dorsoventral patterning in tomato.
Sinjushin, A. A., & Gostimskii, S. A. (2008). Genetic control of fasciation in pea (Pisum sativum L.). Russian Journal of Genetics, 44(6), 702-708.
Smith, R. S. (2006). Guyomarc’ h, S. Mandel, T., Reinhardt, D., Kuhlemeier, C. and Prusinkiewicz, P, 1301-1306.
Stange, R. R., Jeffares, D., Young, C., Scott, D. B., Eason, J. R., & Jameson, P. E. (1996). PCR amplification of the fas‐1 gene for the detection of virulent strains of Rhodococcus fascians. Plant Pathology, 45(3), 407-417.
Święcicki, W. K., & Gawłowska, M. (2004). Linkages for a new fasciata gene. Pisum Genetics, 36, 23-24.
Szczęsny, T., Routier-Kierzkowska, A. L., & Kwiatkowska, D. (2009). Influence of clavata3-2 mutation on early flower development in Arabidopsis thaliana: quantitative analysis of changing geometry. Journal of experimental botany, 60(2), 679-695.
License Article Metadata
This work is licensed under a Creative Commons Attribution 4.0 International License.