Eswari Beeram*, C. Silpa
Department of Chemical Sciences, Sree Vidyanikethan Degree College, Andhra Pradesh, India.
*Corresponding author: eshu.sonu@gmail.com; chamarthishilpa119@gmail.com
Received: May 19, 2021 / Revised: June 19, 2021/ Accepted: June 26, 2021
Abstract
Lactococcus is a Gram-positive bacteria generally used as a probiotic and its antimicrobial properties are well studied. Pseudomonas is one of the deadly pathogens for which vaccination was not available till now. Lactococcus is the nonpathogenic strain and hence the present study was with the antimicrobial activity of the genus with Pseudomonas aeruginosa, Actinomycetes, S.typhii, and paratyphii, and E.coli. Lactococcus is shown to effective against Pseudomonas aeruginosa but not specific to gram-negative bacilli as the zone of inhibition is not observed with E.coli.
Keywords Lactococcus, Lactobacillus, Probiotic, Antimicrobial activity, and Antibiotics
How to cite this article:
Beeram, E., and Silpa, C. (2021). Antagonist effect of Lactococcus on Pseudomonas aeruginosa Isolated from milk and curd. Science Archives, Vol. 2 (2), 109-112. http://dx.doi.org/10.47587/SA.2021.2208
References
Boyle, R. J., Robins-Browne, R. M., & Tang, M. L. (2006). Probiotic use in clinical practice: what are the risks?. The American journal of clinical nutrition, 83(6), 1256-1264.
Brown, M. R. W. (ed): Resistance of a Pseudomonas aeruginosa. John Wiley & Sons, New York, 1975 .
Clarke, P. H., & Richman, M. N. (eds): Genetics and Biochemistry of Pseudomonas. John Wiley & Sons, New York, 1975 .
Dimri, A. G., Prasad, R., Chauhan, A., Aggarwal, M. L., & Varma, A. (2018). Characterization of soil actinomycete isolate against gram-positive and gram-negative food borne bacteria. IJEP, 38, 1004-1015.
Dimri, A. G., Prasad, R., Chauhan, A., Aggarwal, M. L., & Varma, A. (2018). Antibacterial activity of Streptosporangium sp., an Actinobacterium isolated from soil of Uttarakhand region, India. Biochem Cell Arch, 18(2), 1679-1683.
Enan, G., Abdel-Shafi, S., Ouda, S., & Negm, S. (2013). Novel antibacterial activity of Lactococcus lactis subspecies lactis z11 isolated from zabady. International journal of biomedical science: IJBS, 9(3), 174-180.
Felis, G. E., & Dellaglio, F. (2007). Taxonomy of lactobacilli and bifidobacteria. Current issues in intestinal microbiology, 8(2), 44–61.
Feng, J., Chang, X., Zhang, Y., Yan, X., Zhang, J., & Nie, G. (2019). Effects of Lactococcus lactis from Cyprinus carpio L. as probiotics on growth performance, innate immune response and disease resistance against Aeromonas hydrophila. Fish & shellfish immunology, 93, 73-81.
Geldart, K., Borrero, J., & Kaznessis, Y. N. (2015). Chloride-inducible expression vector for delivery of antimicrobial peptides targeting antibiotic-resistant Enterococcus faecium. Applied and environmental microbiology, 81(11), 3889-3897.
Holzapfel, W. H., Haberer, P., Geisen, R., Björkroth, J., & Schillinger, U. (2001). Taxonomy and important features of probiotic microorganisms in food and nutrition. The American journal of clinical nutrition, 73(2), 365s-373s.
Hsing, T., Ming, & Pan, L. T. (2019). Characterization of an antimicrobial substance produced by Lactobacillus plantarum NTU 102. Journal of Microbiology, Immunology and Infection. 52, 409-417.
Jung, M. Y., Lee, C., Seo, M. J., Roh, S. W., & Lee, S. H. (2020). Characterization of a potential probiotic bacterium Lactococcus raffinolactis WiKim0068 isolated from fermented vegetable using genomic and in vitro analyses. BMC microbiology, 20, 1-10.
Lee, N. K., Han, K. J., Son, S. H., Eom, S. J., Lee, S. K., & Paik, H. D. (2015). Multifunctional effect of probiotic Lactococcus lactis KC24 isolated from kimchi. LWT-Food Science and Technology, 64(2), 1036-1041.
Liu, M., Zhang, X., Hao, Y., Ding, J., Shen, J., Xue, Z., … & Wang, N. (2019). Protective effects of a novel probiotic strain, Lactococcus lactis ML2018, in colitis: in vivo and in vitro evidence. Food & function, 10(2), 1132-1145.
Moemen, D., Bedir, T., Awad, E. A., & Ellayeh, A. (2015). Fungal keratitis: Rapid diagnosis using methylene blue stain. Egyptian Journal of Basic and Applied Sciences, 2(4), 289-294.
Montville, T. J., & Chikindas, M. L. (2013). Biological control of foodborne bacteria. Food Microbiology: Fundamentals and Frontiers, 803-822.
Nguyen, T. L., Chun, W. K., Kim, A., Kim, N., Roh, H. J., Lee, Y., & Kim, D. H. (2018). Dietary probiotic effect of Lactococcus lactis WFLU12 on low-molecular-weight metabolites and growth of olive flounder (Paralichythys olivaceus). Frontiers in microbiology, 9, 2059.
Rajendran, V., Puvendran, K., Guru, B. R., & Jayaraman, G. (2016). Design of aqueous two‐phase systems for purification of hyaluronic acid produced by metabolically engineered Lactococcus lactis. Journal of separation science, 39(4), 655-662.
Sherid, M., Samo, S., Sulaiman, S., Husein, H., Sifuentes, H., & Sridhar, S. (2016). Liver abscess and bacteremia caused by lactobacillus: role of probiotics? Case report and review of the literature. BMC gastroenterology, 16(1), 1-6.
Song, A. A. L., Abdullah, J. O., Abdullah, M. P., Shafee, N., Othman, R., Tan, E. F., & Raha, A. R. (2012). Overexpressing 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) in the lactococcal mevalonate pathway for heterologous plant sesquiterpene production. PLoS One, 7(12), e52444.
Song, A. A. L., Abdullah, J. O., Abdullah, M. P., Shafee, N., & Rahim, R. A. (2012). Functional expression of an orchid fragrance gene in Lactococcus lactis. International Journal of Molecular Sciences, 13(2), 1582-1597.
Singh, D., Dimri, A. G., Goyal, P., Chauhan, A., Aggarwal, M. L., & Chacko, K. M. (2012). Microbiological evaluation of street-vended and restaurant’s food items. Curr Res Biol Pharm Sci, 1(1), 25-30.
Ünlü, G., Nielsen, B., & Ionita, C. (2016). Inhibition of Listeria monocytogenes in hot dogs by surface application of freeze-dried bacteriocin-containing powders from lactic acid bacteria. Probiotics and antimicrobial proteins, 8(2), 102-110.
Wessels, S., Axelsson, L., Hansen, E. B., De Vuyst, L., Laulund, S., Lähteenmäki, L., & von Wright, A. (2004). The lactic acid bacteria, the food chain, and their regulation. Trends in food science & technology, 15(10), 498-505.
Woods, D. E., & Iglewski, B. H. (1983). Toxins of Pseudomonas aeruginosa: new perspectives. Reviews of infectious diseases, 5(Supplement_4), S715-S722.
Yerlikaya, O. (2019). Probiotic potential and biochemical and technological properties of Lactococcus lactis ssp. lactis strains isolated from raw milk and kefir grains. Journal of dairy science, 102(1), 124-134
License Article Metadata
This work is licensed under a Creative Commons Attribution 4.0 International License.