Department of Physiology and Medical Physics, College of Medicine, Al-Muthanna University, Iraq
Received: Aug 6, 2023/ Revised: Sept 2, 2023/Accepted: Sept 12, 2023
(✉) Corresponding Author: shatharaheem@mu.edu.iq
Abstract
The bridging Fe-S-Fe, bridging Fe-CO-Fe, and terminal Fe-CO bonds of mono-chalcogenide triiron carbonyl cluster [Fe3(CO)7(µ3-CO)(µ3-S)(µ-dppm)][dppm; diphosphine bis(diphenylphosphino)methane] were characterized utilizing the quantum theory of atoms in a molecule (QTAIM) topological analysis. To our knowledge, there are a few studies investigating Fe–Fe and Fe–S bonds using QTAIM topological analysis. Analysis of the Fe1-s1-Fe2-C3-Fe3 moiety, which is the core of the bridged cluster, showed that there is no bonding pathway between the bonding critical point and the Fe atoms. The parameters electron density ρ(r) and its Laplacian ∇2ρ(r) calculated for Fe-s and Fe-C showed a pronounced pure σ-bonding of this interaction.
Keywords: Aim program, DFT calculations, Delocalization, Iron- cluster, Laplacian
References
Alhimidi, S. R. H., Al-Ibadi, M. A. M., Hasan, A. H., & Taha, A. (2018, May). The QTAIM approach to chemical bonding in triruthenium carbonyl cluster:[Ru3 (μ-H)(μ3-κ2-Haminox-N, N)(CO) 9]. In Journal of Physics: Conference Series (Vol. 1032, No. 1, p. 012068). IOP Publishing.
Al-Ibadi, M. (2020). A Theoretical Investigation on Chemical Bonding of the Bridged Hydride Triruthenium Cluster:[Ru3 (μ-H)(μ3-κ2-Hamphox-N, N)(CO) 9]. Baghdad Science Journal, 17(2), 0488-0488.
Bader, R. F. (1985). Atoms in molecules. Accounts of chemical research, 18(1), 9-15.
Bader, R. F., & Essén, H. (1984). The characterization of atomic interactions. The Journal of chemical physics, 80(5), 1943-1960.
Capon, J. F., Gloaguen, F., Pétillon, F. Y., Schollhammer, P., & Talarmin, J. (2009). Electron and proton transfers at diiron dithiolate sites relevant to the catalysis of proton reduction by the [FeFe]-hydrogenases. Coordination Chemistry Reviews, 253(9-10), 1476-1494.
Dikhtiarenko, A., Khainakov, S., García, J. R., & Gimeno, J. (2017). Mixed-valence μ3-oxo-centered triruthenium cluster [Ru3 (II, III, III)(μ3-O)(μ-CH3CO2) 6 (H2O) 3]· 2H2O: Synthesis, structural characterization, valence-state delocalization and catalytic behavior. Inorganica Chimica Acta, 454, 107-116.
Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., & Fox, D. J. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA.
Ghosh, S., & Hogarth, G. (2017). Trinuclear clusters containing 2-aminopyridinate/pyrimidinate ligands as electrocatalysts for proton reduction. Journal of Organometallic Chemistry, 851, 57-67.
Ghosh, S., Basak-Modi, S., Richmond, M. G., Nordlander, E., & Hogarth, G. (2018). Electrocatalytic proton reduction by thiolate-capped triiron clusters [Fe3 (CO) 9 (μ3-SR)(μ-H)](R= iPr, tBu). Inorganica Chimica Acta, 480, 47-53.
Ghosh, S., Holt, K. B., Kabir, S. E., Richmond, M. G., & Hogarth, G. (2015). Electrocatalytic proton reduction catalysed by the low-valent tetrairon-oxo cluster [Fe 4 (CO) 10 (κ 2-dppn)(μ 4-O)] 2−[dppn= 1, 1′-bis (diphenylphosphino) naphthalene]. Dalton Transactions, 44(11), 5160-5169.
Hehre, W. J. (2003). A guide to molecular mechanics and quantum chemical calculations (Vol. 2). Irvine, CA: Wavefunction.
Johnson, B. F., Lewis, J., Raithby, P. R., & Süss, G. (1979). The triruthenium cluster anion [Ru 3 H (CO) 11]–: preparation, structure, and fluxionality. Journal of the Chemical Society, Dalton Transactions, (9), 1356-1361.
Lepetit, C., Fau, P., Fajerwerg, K., Kahn, M. L., & Silvi, B. (2017). Topological analysis of the metal-metal bond: A tutorial review. Coordination Chemistry Reviews, 345, 150-181.
Nielsen, M. T., Padilla, R., & Nielsen, M. (2020). Homogeneous catalysis by organometallic polynuclear clusters. Journal of Cluster Science, 31, 11-61.
Py, B., Moreau, P. L., & Barras, F. (2011). Fe–S clusters, fragile sentinels of the cell. Current opinion in microbiology, 14(2), 218-223.
Rahaman, A., Lisensky, G. C., Tocher, D. A., Richmond, M. G., Hogarth, G., & Nordlander, E. (2018). Synthesis and molecular structures of the 52-electron triiron telluride clusters [Fe3 (CO) 8 (μ3-Te) 2 (κ2-diphosphine)]-Electrochemical properties and activity as proton reduction catalysts. Journal of Organometallic Chemistry, 867, 381-390.
Richmond, M. G. (2003). Annual survey of organometallic metal cluster chemistry for the year 2001. Coordination chemistry reviews, 241(1-2), 273-294.
Richmond, M. G. (2004). Annual survey of organometallic metal cluster chemistry for the year 2002. Coordination chemistry reviews, 248(9-10), 881-901.
Rickard, D., & Luther, G. W. (2007). Chemistry of iron sulfides. Chemical reviews, 107(2), 514-562.
Silvi, B., Fourré, I., & Alikhani, M. E. (2005). The topological analysis of the electron localization function. A key for a position space representation of chemical bonds. Monatshefte für Chemie/Chemical Monthly, 136, 855-879.
Sourisseau, C., Cavagnat, R., & Fouassier, M. (1991). The vibrational properties and valence force fields of FeS2, RuS2 pyrites and FeS2 marcasite. Journal of Physics and Chemistry of Solids, 52(3), 537-544.
Stiefel, E. I. (1998). Transition metal sulfur chemistry and its relevance to molybdenum and tungsten enzymes. Pure and applied chemistry, 70(4), 889-896.
Tard, C., & Pickett, C. J. (2009). Structural and functional analogues of the active sites of the [Fe]-,[NiFe]-, and [FeFe]-hydrogenases. Chemical reviews, 109(6), 2245-2274.
Volbeda, A., Charon, M. H., Piras, C., Hatchikian, E. C., Frey, M., & Fontecilla-Camps, J. C. (1995). Crystal structure of the nickel–iron hydrogenase from Desulfovibrio gigas. Nature, 373(6515), 580-587.
Volbeda, A., Garcin, E., Piras, C., de Lacey, A. L., Fernandez, V. M., Hatchikian, E. C. & Fontecilla-Camps, J. C. (1996). Structure of the [NiFe] hydrogenase active site: evidence for biologically uncommon Fe ligands. Journal of the American Chemical Society, 118(51), 12989-12996.
Wadt, W. R., & Hay, P. J. (1985). Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. The Journal of chemical physics, 82(1), 284-298.
Xu, X. M., & Møller, S. G. (2011). Iron–sulfur clusters: biogenesis, molecular mechanisms, and their functional significance. Antioxidants & redox signaling, 15(1), 271-307.
Zhang, Y., & Yang, W. (1998). Comment on “Generalized gradient approximation made simple”. Physical Review Letters, 80(4), 890.
How to cite this article
Alhimidi, S. R. H. (2023). Electronic structure study of clusters containing triiron metal atoms: QTAIM Approach. Science Archives, Vol. 4(3), 221-225. https://doi.org/10.47587/SA.2023.4307
Licence Article Metadata
This work is licensed under a Creative Commons Attribution 4.0 International License.