Diptendu Sarkar ✉ and Sk Murtaj Ahamed
Department of Microbiology, Ramakrishna Mission Vidyamandira, Belur Math, Howrah-711202, West Bengal, India
Received: Oct 8, 2022/ Revised: Nov 26, 2022/ Accepted: Nov 27, 2022
(✉) Corresponding Author: diptendu81@gmail.com
Abstract
Among all known viruses, Ebola has the unfortunate distinction of having some of the highest case-fatality rates. It is critical that new antivirals be developed to fight Ebola virus infections. A simulated screening of nearly 20 compounds against the revised protein structure of Ebola as represented by the GP24 model resulted in the selection of one molecule (CID 3851453) that may one day be used as an antiviral drug for the Ebola virus. It was found that binding energy was -7.4 Kcal/mol. The physiological and bioactivity parameters were correctly predicted together with ADMET. The 50 ns molecular dynamics simulation results’ RMSD, RMSF, and Rg values showed that the proposed compound was well equilibrated and, as a result, stable in the protein-ligand complex. The substantial binding affinities of this chemical (CID 3851453) to the receptor cavity were consistent with the findings of the docking studies. Additionally, it is expected that the identified inhibitor (CID 3851453) will serve as a more advantageous starting point for future experimental studies in the hunt for antiviral medications.
Keywords: Ebola virus, GP24, Docking, RMSD, RMSF, Rg values
References
Anders, E., Koch, R., & Freunscht, P. (1993). Optimization and application of lithium parameters for PM3. Journal of computational chemistry, 14(11), 1301-1312.
Antal Jr, M. J., Leesomboon, T., Mok, W. S., & Richards, G. N. (1991). Mechanism of formation of 2-furaldehyde from D-xylose. Carbohydrate Research, 217, 71-85.
Arooj, M., Sakkiah, S., Kim, S., Arulalapperumal, V., & Lee, K. W. (2013). A combination of receptor-based pharmacophore modeling & QM techniques for identification of human chymase inhibitors. PLoS One, 8(4), e63030.
Azam, S. S., & Abbasi, S. W. (2013). Molecular docking studies for the identification of novel melatoninergic inhibitors for acetylserotonin-O-methyltransferase using different docking routines. Theoretical Biology and Medical Modelling, 10(1), 1-16.
Balimane, P. V., Chong, S., & Morrison, R. A. (2000). Current methodologies used for evaluation of intestinal permeability and absorption. Journal of pharmacological and toxicological methods, 44(1), 301-312.
Beaulieu, D., & Ohemeng, K. A. (1999). Patents on bacterial tRNA synthetase inhibitors: January 1996 to March 1999. Expert Opinion on Therapeutic Patents, 9(8), 1021-1028.
Beeching, N. J., Fenech, M., & Houlihan, C. F. (2014). Ebola virus disease. BMJ 349: g7348.
Benet, L. Z., & Hoener, B. A. (2002). Changes in plasma protein binding have little clinical relevance. Clinical Pharmacology & Therapeutics, 71(3), 115-121.
Bissantz, C., Folkers, G., & Rognan, D. (2000). Protein-based virtual screening of chemical databases. 1. Evaluation of different docking/scoring combinations. Journal of medicinal chemistry, 43(25), 4759-4767.
Braga, E. J., Corpe, B. T., Marinho, M. M., & Marinho, E. S. (2016). Molecular electrostatic potential surface, HOMO–LUMO, and computational analysis of synthetic drug Rilpivirine. Int. J. Sci. Eng. Res, 7(7), 315-319.
Brehm, M. A., Bortell, R., Verma, M., Shultz, L. D., & Greiner, D. L. (2016). Humanized mice in translational immunology. Translational immunology: mechanisms and pharmacological approaches, 285-326.
Castillo-Garit, J. A., Marrero-Ponce, Y., Torrens, F., & García-Domenech, R. (2008). Estimation of ADME properties in drug discovery: predicting Caco-2 cell permeability using atom-based stochastic and non-stochastic linear indices. Journal of pharmaceutical sciences, 97(5), 1946-1976.
De Oliveira, A. M. (2018). Introdução à modelagem Molecular para Química, Engenharia e Biomédicas: fundamentos e exercícios. Appris Editora e Livraria Eireli-ME.
Desai, C. (2016). Meyler’s side effects of drugs: The international encyclopedia of adverse drug reactions and interactions. Indian Journal of Pharmacology, 48(2), 224.
Dezani, T. M., Dezani, A. B., da Silva Junior, J. B., & dos Reis Serra, C. H. (2016). Single-Pass Intestinal Perfusion (SPIP) and prediction of fraction absorbed and permeability in humans: A study with antiretroviral drugs. European Journal of Pharmaceutics and Biopharmaceutics, 104, 131-139.
Feldmann, H., & Geisbert, T. W. (2011). Ebola haemorrhagic fever. The Lancet, 377(9768), 849-862.
Gasteiger, J., & Marsili, M. (1980). Iterative partial equalization of orbital electronegativity-a rapid access to atomic charges. Tetrahedron, 36(22), 3219-3228.
Irvine, J. D., Takahashi, L., Lockhart, K., Cheong, J., Tolan, J. W., Selick, H. E., & Grove, J. R. (1999). MDCK (Madin–Darby canine kidney) cells: a tool for membrane permeability screening. Journal of pharmaceutical sciences, 88(1), 28-33.
Khabbaz, R., Bell, B. P., Schuchat, A., Ostroff, S. M., Moseley, R., Levitt, A., & Hughes, J. M. (2015). Emerging and reemerging infectious disease threats. Mandell, Douglas, and Bennett’s principles and practice of infectious diseases, 158.
Koes, D. R. (2018). The Pharmit backend: A computer systems approach to enabling interactive online drug discovery. IBM journal of research and development, 62(6), 3-1.
La Regina, G., Gatti, V., Piscitelli, F., & Silvestri, R. (2011). Open vessel and cooling while heating microwave-assisted synthesis of pyridinyl N-aryl hydrazones. ACS combinatorial science, 13(1), 2-6.
Lee, S. K., Lee, I. H., Kim, H. J., Chang, G. S., Chung, J. E., & No, K. T. (2003). The PreADME Approach: Web-based program for rapid prediction of physico-chemical, drug absorption and drug-like properties. EuroQSAR 2002 Designing Drugs and Crop Protectants: processes, problems and solutions, 2003, 418-420.
Loprinzi, C. L., Barton, D. L., & Qin, R. (2011). Nonestrogenic management of hot flashes. Journal of Clinical Oncology, 29(29), 3842-3846.
Ma, X. L., Chen, C., & Yang, J. (2005). Predictive model of blood-brain barrier penetration of organic compounds. Acta Pharmacologica Sinica, 26(4), 500-512.
Mali, S. N., & Chaudhari, H. K. (2019). Molecular modelling studies on adamantane-based Ebola virus GP-1 inhibitors using docking, pharmacophore and 3D-QSAR. SAR and QSAR in Environmental Research, 30(3), 161-180.
Morris, G. M., Goodsell, D. S., Halliday, R. S., Huey, R., Hart, W. E., Belew, R. K., & Olson, A. J. (1998). Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. Journal of computational chemistry, 19(14), 1639-1662.
Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of computational chemistry, 30(16), 2785-2791.
Mukund, V., Behera, S. K., Alam, A., & Nagaraju, G. P. (2019). Molecular docking analysis of nuclear factor-κB and genistein interaction in the context of breast cancer. Bioinformation, 15(1), 11.
Nimlos, M. R., Qian, X., Davis, M., Himmel, M. E., & Johnson, D. K. (2006). Energetics of xylose decomposition as determined using quantum mechanics modeling. The Journal of Physical Chemistry A, 110(42), 11824-11838.
Oso, B. J., Adeoye, A. O., & Olaoye, I. F. (2020). Pharmacoinformatics and hypothetical studies on allicin, curcumin, and gingerol as potential candidates against COVID-19-associated proteases. Journal of Biomolecular Structure and Dynamics, 1-12.
Ostroff, D., McDade, J., LeDuc, J., & Hughes, J. M. (2005). Emerging and re-emerging infectious disease threats. Principles and practice of infectious disease. Philadelphia, Elsevier Churchill Livingstone, 173-192.
Ramalingam, S., Babu, P. D. S., Periandy, S., & Fereyduni, E. (2011). Vibrational investigation, molecular orbital studies and molecular electrostatic potential map analysis on 3-chlorobenzoic acid using hybrid computational calculations. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 84(1), 210-220.
Roe, D. R., & Cheatham III, T. E. (2013). PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. Journal of chemical theory and computation, 9(7), 3084-3095.
Rothman, R. B., Baumann, M. H., Prisinzano, T. E., & Newman, A. H. (2008). Dopamine transport inhibitors based on GBR12909 and benztropine as potential medications to treat cocaine addiction. Biochemical pharmacology, 75(1), 2-16.
Rougeron, V., Feldmann, H., Grard, G., Becker, S., & Leroy, E. M. (2015). Ebola and Marburg haemorrhagic fever. Journal of Clinical Virology, 64, 111-119.
Sarkar, D. (2021). Molecular Docking study to Identify Potent Fungal Metabolites as Inhibitors against SARS-CoV-2 Main Protease Enzyme. Int J Pharm Sci.12(2), b78-85 http://dx.doi.org/10.22376/ijpbs.2021.12.2.b78-85
Sarkar, D. (2022). In-silico research to screen various phytochemicals as potential therapeutics againstbeta glucan synthase enzyme from black fungus endangering COVID patients in India. Intern. J. Zool. Invest. 8(1): 320-337 https://doi.org/10.33745/ijzi.2022.v08i01.035
Sarkar, D., Ganguly, A. (2022). Molecular Docking Studies with Garlic Phytochemical Constituents To Inhibit The Human EGFR Protein For Lung Cancer Therapy. Int J Pharm Sci.13(2), B1-14 http://dx.doi.org/10.22376/Ijpbs.2022.13.2.b1-14
Sarkar, D., Maiti, A. K. (2023). Virtual Screening and Molecular Docking Studies with Organosulfur and Flavonoid Compounds of Garlic Targeting the Estrogen Receptor Protein for the Therapy of Breast Cancer. Volume 13, Issue 1, 2023, 49 https://doi.org/10.33263/BRIAC 131.049
Sarkar, D., Maiti, A.K., Rawaf, A., Babu, J. (2022). In silico Approach to Identify Potent Bioactive Compounds as Inhibitors against the Enoyl-acyl Carrier Protein (acp) Reductase Enzyme of Mycobacterium tuberculosis. Volume 12, Issue 5, 7023 – 7039 https://doi.org/10.33263/BRIAC 125.70237039
Wadapurkar, R. M., Shilpa, M. D., Katti, A. K. S., & Sulochana, M. B. (2018). In silico drug design for Staphylococcus aureus and development of host-pathogen interaction network. Informatics in Medicine Unlocked, 10, 58-70.
Wenthur, C. J., Gentry, P. R., Mathews, T. P., & Lindsley, C. W. (2014). Drugs for allosteric sites on receptors. Annual review of pharmacology and toxicology, 54, 165-184.
How to cite this article
Sarkar, D. and Ahamad, Sk. M. (2022). Finding antagonist for the VP24 protein of the Ebola virus to treat infections using molecular docking and molecular dynamics studies. Science Archives, Vol. 3(4), 289-300 https://doi.org/10.47587/SA.2022.3408
Licence Article Metadata
This work is licensed under a Creative Commons Attribution 4.0 International License.