Ekhlas Abdallah Hassan¹, Wafaa Sh. Al – Zuhairi¹, Rusul Y. Hameed²
¹Department of Chemistry, College of Science, University of Diyala, Baquba, Diyala, Iraq
²Al hikma College.Unversity, Bagdad, Iraq
Received: Feb 14, 2022 / Revised: Mar 04, 2022 / Accepted: Mar 12, 2022
Abstract
A safe and effective way to protect against disease is immunization. Where, it aids the body’s resistance to some infections and strengthens the immune system, resulting in practicing the system of immune to creating antibodies, specific the ease and speed of the (Covid-19) Coronavirus spread as well majority infection of the humans’ population. Vaccine’s significance rests in its ability to defend in contradiction of the Covid-19 by promoting the human body to generate a response of an immune. It protects the human body by preventing or controlling the infecting. Vaccines include inactivated parts of a specific organism (antigen) that make the response of immune inside the body. New vaccines contain the scheme to produce the antigen rather than the antigen itself. In any case, whether the vaccine consists of the antigen itself or a scheme that allows producing the antigen inside the body. This attenuated virus is not going to cause disease to people, who have taken the vaccine. However, it will fast the immune system to react as closely as likely as if it were its first response to the actual pathogen. The paper considers the significant advancements in SARS-CoV-2 vaccinations development for humans, with a special focus on the vaccination approach. Furthermore, we would like to learn more about how the current vaccine works, based on previous efforts to offer the vaccine, building on earlier vaccine delivery, to persuade people to get a COVID-19 vaccine in time to stop the pandemic from spreading.
Keywords Covid-19, immunization, Pfizer-Bioentech, Vaccines, Oxford–Astra Zeneca
How to cite this article
Hassan1, E. A., Al – Zuhairi, W. S., Hameed, R. Y. (2022). How do corona (Covid-19) vaccines work? A Review. Science Archives, Vol. 3 (1), 66-71. http://dx.doi.org/10.47587/SA.2022.3108
References
Balding, B. (2006). Mandatory vaccination: why we still got to get folks to take their shots.
Barrett, P. N., Mundt, W., Kistner, O., & Howard, M. K. (2009). Vero cell platform in vaccine production: moving towards cell culture-based viral vaccines. Expert review of vaccines, 8(5), 607-618.
Bergman, P. J., McKnight, J., Novosad, A., Charney, S., Farrelly, J., Craft, D., & Wolchok, J. D. (2003). Long-term survival of dogs with advanced malignant melanoma after DNA vaccination with xenogeneic human tyrosinase: a phase I trial. Clinical Cancer Research, 9(4), 1284-1290.
Centers for Disease Control and Prevention. (2021). Information about COVID-19 vaccines for people with allergies.
Corbeil, S., LaPatra, S. E., Anderson, E. D., Jones, J., Vincent, B., Hsu, Y. L., & Kurath, G. (1999). Evaluation of the protective immunogenicity of the N, P, M, NV and G proteins of infectious hematopoietic necrosis virus in rainbow trout Oncorhynchus mykiss using DNA vaccines. Diseases of Aquatic Organisms, 39(1), 29-36.
Crank, M. C., Ruckwardt, T. J., Chen, M., Morabito, K. M., Phung, E., Costner, P. J., & VRC 317 Study Team. (2019). A proof of concept for structure-based vaccine design targeting RSV in humans. Science, 365(6452), 505-509.
Davis, B. S., Chang, G. J. J., Cropp, B., Roehrig, J. T., Martin, D. A., Mitchell, C. J., … & Bunning, M. L. (2001). West Nile virus recombinant DNA vaccine protects mouse and horse from virus challenge and expresses in vitro a noninfectious recombinant antigen that can be used in enzyme-linked immunosorbent assays. Journal of virology, 75(9), 4040-4047.
Decker, J. M. “Vaccines”. Immunology Course 419. Department of Veterinary Science & Microbiology at The University of Arizona. Archived from the original on 2003-06-10.
Ferraro, B., Morrow, M. P., Hutnick, N. A., Shin, T. H., Lucke, C. E., & Weiner, D. B. (2011). Clinical applications of DNA vaccines: current progress. Clinical infectious diseases, 53(3), 296-302.
Hall, S. (1984). The narrative construction of reality: an interview with Stuart Hall.-Reprinted from a transcript of an interview by John O’Hara on the ABC programme’Double Take’, 5 May 1983. Southern Review (Adelaide), 17(1), 3-17
Heinz, F. X., & Stiasny, K. (2012). Flaviviruses and flavivirus vaccines. Vaccine, 30(29), 4301-4306.
Hsieh, C. L., Goldsmith, J. A., Schaub, J. M., DiVenere, A. M., Kuo, H. C., Javanmardi, K., … & McLellan, J. S. (2020). Structure-based design of prefusion-stabilized SARS-CoV-2 spikes. Science, 369(6510), 1501-1505.
Jackson, N. A., Kester, K. E., Casimiro, D., Gurunathan, S., & DeRosa, F. (2020). The promise of mRNA vaccines: a biotech and industrial perspective. npj Vaccines, 5(1), 1-6.
Knoll, M. D., & Wonodi, C. (2021). Oxford–AstraZeneca COVID-19 vaccine efficacy. The Lancet, 397(10269), 72-74.
Kyriakidis, N. C., López-Cortés, A., González, E. V., Grimaldos, A. B., & Prado, E. O. (2021). SARS-CoV-2 vaccines strategies: a comprehensive review of phase 3 candidates. npj Vaccines, 6(1), 1-17.
Lee, L. Y. Y., Izzard, L., & Hurt, A. C. (2018). A review of DNA vaccines against influenza. Frontiers in immunology, 9, 1568.
Li, L., Saade, F., & Petrovsky, N. (2012). The future of human DNA vaccines. Journal of biotechnology, 162(2-3), 171-182.
Li, Y., Liang, S., & Ng, C. W. (2021). A comprehensive comparison between COVID-19 vaccines: a review. ScienceOpen Preprints.
Liu, M. A. (2011). DNA vaccines: an historical perspective and view to the future. Immunological reviews, 239(1), 62-84.
Lubroth, J., Rweyemamu, M. M., Viljoen, G., Diallo, A., Dungu, B., & Amanfu, W. (2007). Veterinary vaccines and their use in developing countries. Revue scientifique et technique (International Office of Epizootics), 26(1), 179-201.
Madhusudana, S. N., Shamsundar, R., & Seetharaman, S. (2004). In vitro inactivation of the rabies virus by ascorbic acid. International journal of infectious diseases, 8(1), 21-25.
Marker, S. (2013). hepatitis B virus infection1. CDC Health Information for International Travel 2014: The Yellow Book, 186.
Martin, S. S., Bakken, R. R., Lind, C. M., Garcia, P., Jenkins, E., Glass, P. J., & Fine, D. L. (2010). Comparison of the immunological responses and efficacy of gamma-irradiated V3526 vaccine formulations against subcutaneous and aerosol challenge with Venezuelan equine encephalitis virus subtype IAB. Vaccine, 28(4), 1031-1040.
Norbert, P., Michael, J. H., Frederick, W. P., & Drew, W. (2018). mRNA vaccines—A new era in vaccinology. Nat. Rev. Drug Discov, 17(4), 261-279.
Pallesen, J., Wang, N., Corbett, K. S., Wrapp, D., Kirchdoerfer, R. N., Turner, H. L., & McLellan, J. S. (2017). Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen. Proceedings of the National Academy of Sciences, 114(35), E7348-E7357.
Pandey, S. C., Pande, V., Sati, D., Upreti, S., & Samant, M. (2020). Vaccination strategies to combat novel corona virus SARS-CoV-2. Life sciences, 256, 117956.
Park, J. W., Lagniton, P. N., Liu, Y., & Xu, R. H. (2021). mRNA vaccines for COVID-19: what, why and how. International journal of biological sciences, 17(6), 1446.
Pimenta, D., Yates, C., Pagel, C., & Gurdasani, D. (2021). Delaying the second dose of covid-19 vaccines. bmj, 372.
Razonable, R. R., Aloia, N. C., Anderson, R. J., Anil, G., Arndt, L. L., Arndt, R. F., … & Borgen, M. J. D. (2021, May). A framework for outpatient infusion of antispike monoclonal antibodies to high-risk patients with mild-to-moderate coronavirus disease-19: the Mayo Clinic Model. In Mayo Clinic Proceedings (Vol. 96, No. 5, pp. 1250-1261). Elsevier.
Sanders, R. W., Derking, R., Cupo, A., Julien, J. P., Yasmeen, A., de Val, N., & Moore, J. P. (2013). A next-generation cleaved, soluble HIV-1 Env trimer, BG505 SOSIP. 664 gp140, expresses multiple epitopes for broadly neutralizing but not non-neutralizing antibodies. PLoS pathogens, 9(9), e1003618.
Silveira, M. M., Moreira, G. M. S. G., & Mendonça, M. (2021). DNA vaccines against COVID-19: Perspectives and challenges. Life sciences, 267, 118919.
Silveira, M. M., Oliveira, T. L., Schuch, R. A., McBride, A. J. A., Dellagostin, O. A., & Hartwig, D. D. (2017). DNA vaccines against leptospirosis: A literature review. Vaccine, 35(42), 5559-5567.
Stauffer, F., El-Bacha, T., & Da Poian, A. T. (2006). Advances in the development of inactivated virus vaccines. Recent patents on anti-infective drug discovery, 1(3), 291-296.
Xie, X., Zou, J., Fontes-Garfias, C. R., Xia, H., Swanson, K. A., Cutler, M., & Dormitzer, P. R. (2021). Neutralization of N501Y Mutant SARS-CoV-2 by BNT162b2 Vaccine-Elicited Sera. bioRxiv Prepr. Serv. Biol.
Licence Article Metadata
This work is licensed under a Creative Commons Attribution 4.0 International License.