Atika Alahmed ✉¹, Eman Al-Rubaee² , and Talal H. Noon³
¹Department of Oral Medicine, College of Dentistry, University of Baghdad, Iraq
²Department of Basic Science, College of Dentistry, University of Baghdad, Iraq
³Department of Medicine, Al-Zahraa College of Medicine, University of Basra, Iraq
Received: May 18, 2023/ Revised: June 7, 2023/Accepted: June 15, 2023
(✉) Corresponding Author: atika.alahmed@gmail.com
Abstract
Galectins are a group of 16 members that all share an amino acid sequence named carbohydrate recognition domain that binds to a beta-galactoside and produces multiple intra- and extra-cellular functions such as modulating inflammation. Inflammatory bowel disease is a chronic inflammatory disorder of the large and small intestines that comprises two diseases, Crohn disease and Ulcerative Colitis. Ulcerative colitis showed a persistent inflammatory process that affects mainly the colon, this chronic colonic inflammation is affected by several internal and environmental factors. Many galectins are classically expressed in certain gut areas. Organ-specific distribution and abundance of some Galectins make them an important material for many researchers and a useful therapeutic target for different diseases, therefore; their role in colonic inflammation is reviewed to manifest their correlation to chronic diseases such as ulcerative colitis.
Keywords: Inflammatory Bowel Disease, Ulcerative Colitis, Galectins, Colonic Inflammation
References
Block, M., Mölne, J., Leffler, H., Börjesson, L., & Breimer, M. E. (2016). Immunohistochemical studies on galectin expression in colectomised patients with ulcerative colitis. BioMed Research International, 2016. https://doi.org/10.1155/2016/5989128
Blois, S. M., Dveksler, G., Vasta, G. R., Freitag, N., Blanchard, V., & Barrientos, G. (2019). Pregnancy galectinology: insights into a complex network of glycan binding proteins. Frontiers in immunology, 10, 1166. https://doi.org/10.3389/fimmu.2019.01166
Cao, Z. Q., & Guo, X. L. (2016). The role of galectin-4 in physiology and diseases. Protein & cell, 7(5), 314-324. https://link.springer.com/article/10.1007/s13238-016-0262-9.
Carabelli, J., Prato, C. A., Sanmarco, L. M., Aoki, M. P., Campetella, O., & Tribulatti, M. V. (2018). Interleukin‐6 signalling mediates Galectin‐8 co‐stimulatory activity of antigen‐specific CD 4 T‐cell response. Immunology, 155(3), 379-386. https://doi.org/10.1111/imm.12980
Cerliani, J. P., Blidner, A. G., Toscano, M. A., Croci, D. O., & Rabinovich, G. A. (2017). Translating the ‘sugar code’into immune and vascular signaling programs. Trends in biochemical sciences, 42(4), 255-273. https://doi.org/10.1016/j.tibs.2016.11.003
Farhadi, S. A., & Hudalla, G. A. (2016). Engineering galectin–glycan interactions for immunotherapy and immunomodulation. Experimental Biology and Medicine, 241(10), 1074-1083. https://doi.org/10.1177/1535370216650055
Fundora, J. B., Zhu, J., Yanek, L. R., Go, M., Shakeel, F., Brooks, S. S., … & Shores, D. R. (2022). Galectin-4 as a Novel Biomarker of Neonatal Intestinal Injury. Digestive diseases and sciences, 1-9. https://link.springer.com/article/10.1007/s10620-021-06929-z
Hazarbassanov, R. M. (2022). Prospective Biomarkers in Keratoconus. In Keratoconus: A Comprehensive Guide to Diagnosis and Treatment (pp. 19-27). Cham: Springer International Publishing. DOI: 10.1007/978-3-030-85361-7_3
Hong, S. H., Shin, J. S., Chung, H., & Park, C. G. (2019). Galectin-4 interaction with CD14 triggers the differentiation of monocytes into macrophage-like cells via the MAPK signaling pathway. Immune Network, 19(3). https://doi.org/10.4110/in.2019.19.e17
John, S., & Mishra, R. (2016). Galectin-9: From cell biology to complex disease dynamics. Journal of biosciences, 41, 507-534. https://link.springer.com/article/10.1007/s12038-016-9616-y
Kaminker, J. D., & Timoshenko, A. V. (2021). Expression, regulation, and functions of the galectin-16 gene in human cells and tissues. Biomolecules, 11(12), 1909. https://doi.org/10.3390/biom11121909
Katzenmaier, E. M., Fuchs, V., Warnken, U., Schnölzer, M., Gebert, J., & Kopitz, J. (2019). Deciphering the galectin-12 protein interactome reveals a major impact of galectin-12 on glutamine anaplerosis in colon cancer cells. Experimental cell research, 379(2), 129-139. https://doi.org/10.1016/j.yexcr.2019.03.032
Kim, S. W., Park, K. C., Jeon, S. M., Ohn, T. B., Kim, T. I., Kim, W. H., & Cheon, J. H. (2013). Abrogation of galectin-4 expression promotes tumorigenesis in colorectal cancer. Cellular Oncology, 36, 169-178. https://link.springer.com/article/10.1007/s13402-013-0124-x.
Law, H. L., Wright, R. D., Iqbal, A. J., Norling, L. V., & Cooper, D. (2020). A pro-resolving role for galectin-1 in acute inflammation. Frontiers in Pharmacology, 11, 274. https://doi.org/10.3389/fphar.2020.00274
Lin, T., Yu, C. C., Liu, C. M., Hsieh, P. L., Liao, Y. W., Yu, C. H., & Chen, C. J. (2021). Er: YAG laser promotes proliferation and wound healing capacity of human periodontal ligament fibroblasts through Galectin-7 induction. Journal of the Formosan Medical Association, 120(1), 388-394. https://doi.org/10.1016/j.jfma.2020.06.005
Liu, Y., Meng, H., Xu, S., & Qi, X. (2020). Galectins for diagnosis and prognostic assessment of human diseases: an overview of meta-analyses. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, 26, e923901-1.
Luo, Z., Ji, Y., Tian, D., Zhang, Y., Chang, S., Yang, C., … & Chen, Z. K. (2018). Galectin-7 promotes proliferation and Th1/2 cells polarization toward Th1 in activated CD4+ T cells by inhibiting The TGFβ/Smad3 pathway. Molecular immunology, 101, 80-85. https://doi.org/10.1016/j.molimm.2018.06.003
Melo, R. C., Wang, H., Silva, T. P., Imoto, Y., Fujieda, S., Fukuchi, M. & Weller, P. F. (2020). Galectin-10, the protein that forms Charcot-Leyden crystals, is not stored in granules but resides in the peripheral cytoplasm of human eosinophils. Journal of Leucocyte Biology, 108(1), 139-149. https://doi.org/10.1002/JLB.3AB0220-311R
Negedu, M. N., Duckworth, C. A., & Yu, L. G. (2023). Galectin-2 in Health and Diseases. International Journal of Molecular Sciences, 24(1), 341. https://doi.org/10.3390/ijms24010341
Neurath, M. F. (2014). Cytokines in inflammatory bowel disease. Nature Reviews Immunology, 14(5), 329-342. DOI https://doi.org/10.1038/nri3661
O’Brien, M. J., Shu, Q., Stinson, W. A., Tsou, P. S., Ruth, J. H., Isozaki, T. & Amin, M. A. (2018). A unique role for galectin-9 in angiogenesis and inflammatory arthritis. Arthritis Research & Therapy, 20(1), 1-8. https://arthritisresearch.biomedcentral.com/articles/10.1186/s13075-018-1519-x
Papa Gobbi, R., De Francesco, N., Bondar, C., Muglia, C., Chirdo, F., Rumbo, M. & Docena, G. H. (2016). A galectin‐specific signature in the gut delineates C rohn’s disease and ulcerative colitis from other human inflammatory intestinal disorders. Biofactors, 42(1), 93-105. https://doi.org/10.1002/biof.1252
Pardo, E., Cárcamo, C., Uribe-San Martin, R., Ciampi, E., Segovia-Miranda, F., Curkovic-Peña, C. & González, A. (2017). Galectin-8 as an immunosuppressor in experimental autoimmune encephalomyelitis and a target of human early prognostic antibodies in multiple sclerosis. PLoS One, 12(6), e0177472. https://doi.org/10.1371/journal.pone.0177472
Porter, R. J., Kalla, R., & Ho, G. T. (2020). Ulcerative colitis: Recent advances in the understanding of disease pathogenesis. F1000Research, 9. DOI:10.12688/f1000research.20805.1 .PMID: 32399194
Robinson, B. S., Saeedi, B., Arthur, C. M., Owens, J., Naudin, C., Ahmed, N., & Stowell, S. R. (2020). Galectin-9 is a novel regulator of epithelial restitution. The American Journal of Pathology, 190(8), 1657-1666. https://doi.org/10.1016/j.ajpath.2020.04.010
Sammar, M., Drobnjak, T., Mandala, M., Gizurarson, S., Huppertz, B., & Meiri, H. (2019). Galectin 13 (PP13) facilitates remodeling and structural stabilization of maternal vessels during pregnancy. International Journal of Molecular Sciences, 20(13), 3192. https://doi.org/10.3390/ijms20133192
Sanjurjo, L., Broekhuizen, E. C., Koenen, R. R., & Thijssen, V. L. (2022). Galectokines: the promiscuous relationship between galectins and cytokines. Biomolecules, 12(9), 1286. https://doi.org/10.3390/biom12091286
Sciacchitano, S., Lavra, L., Morgante, A., Ulivieri, A., Magi, F., De Francesco, G. P. & Ricci, A. (2018). Galectin-3: one molecule for an alphabet of diseases, from A to Z. International journal of molecular sciences, 19(2), 379. https://doi.org/10.3390/ijms19020379
Sudhakar, J. N., Lu, H. H., Chiang, H. Y., Suen, C. S., Hwang, M. J., Wu, S. Y., Shen, C. N., Chang, Y. M., Li, F. A., Liu, F. T., Shui, J. W. (2020). Lumenal Galectin-9-Lamp2 interaction regulates lysosome and autophagy to prevent pathogenesis in the intestine and pancreas. Nature communications,11(1):1-7. https://www.nature.com/articles/s41467-020-18102-7
Sundblad, V., Morosi, L. G., Geffner, J. R., & Rabinovich, G. A. (2017). Galectin-1: a jack-of-all-trades in the resolution of acute and chronic inflammation. The Journal of Immunology, 199(11), 3721-3730. https://doi.org/10.4049/jimmunol.1701172
Thiemann, S., & Baum, L. G. (2016). Galectins and immune responses—just how do they do those things they do?. Annual review of immunology, 34, 243-264. https://doi.org/10.1146/annurev-immunol-041015-055402
Tomizawa, H., Yamada, Y., Arima, M., Miyabe, Y., Fukuchi, M., Hikichi, H. & Ueki, S. (2022). Galectin-10 as a Potential Biomarker for Eosinophilic Diseases. Biomolecules, 12(10), 1385. https://doi.org/10.3390/biom12101385
Tribulatti, M. V., Carabelli, J., Prato, C. A., & Campetella, O. (2020). Galectin-8 in the onset of the immune response and inflammation. Glycobiology, 30(3), 134-142. https://doi.org/10.1093/glycob/cwz077
Varki, A., Cummings, R. D., Esko, J. D., Stanley, P., Hart, G. W., Aebi, M. & Seeberger, P. H. (2022). Essentials of Glycobiology [Internet]. http://hdl.handle.net/11336/165302
Wan, L., Yang, R. Y., & Liu, F. T. (2018). Galectin-12 in cellular differentiation, apoptosis and polarization. International journal of molecular sciences, 19(1), 176. https://doi.org/10.3390/ijms19010176
Wang, M., Xu, Y., Wang, P., Xu, Y., Jin, P., Wu, Z. & Dong, M. (2021). Galectin-14 promotes trophoblast migration and invasion by upregulating the expression of MMP-9 and N-cadherin. Frontiers in Cell and Developmental Biology, 9, 645658. https://doi.org/10.3389/fcell.2021.645658.
Xu, W. D., Huang, Q., & Huang, A. F. (2021). Emerging role of galectin family in inflammatory autoimmune diseases. Autoimmunity Reviews, 20(7), 102847. https://doi.org/10.1016/j.autrev.2021.102847
Yaseen, H., Butenko, S., Polishuk-Zotkin, I., Schif-Zuck, S., Pérez-Sáez, J. M., Rabinovich, G. A., & Ariel, A. (2020). Galectin-1 facilitates macrophage reprogramming and resolution of inflammation through IFN-β. Frontiers in Pharmacology, 11, 901. https://doi.org/10.3389/fphar.2020.00901
Yu, T. B., Dodd, S., Yu, L. G., & Subramanian, S. (2020). Serum galectins as potential biomarkers of inflammatory bowel diseases. PLoS One, 15(1), e0227306. https://doi.org/10.1371/journal.pone.0227306
How to cite this article
Alahmed, A., Al-Rubaee, E. and Noon, T. H. (2023). Human Galectines and their contribution in the chronic colonic inflammation (review). Science Archives, Vol. 4(2), 141-146. https://doi.org/10.47587/SA.2023.4211
Licence Article Metadata
This work is licensed under a Creative Commons Attribution 4.0 International License.