Diptendu Sarkar✉ and Souvik Mitra
Department of Microbiology, Ramakrishna Mission Vidyamandira, Belur Math, Howrah-711202, West Bengal, India
Received: Sept 26, 2022/ Revised: Oct 19, 2022/ Accepted: Nov 10, 2022
(✉) Corresponding Author: diptendu81@gmail.com
Abstract
Gastrointestinal Tract (GIT) associated microbiota is a diverse community of trillions of microorganisms, which homeostatically co-exist with the host in normal conditions and interact actively with the physiological processes of the host. Among them, some microorganisms impart beneficial effects on the host while pathogens and opportunistic pathogens always tend to invade host body cells. Many studies have now established that probiotic bacterial strains can modulate our overall immunity and play crucial roles in digestion, metabolism, brain-gut communication, etc. Talk about immunomodulation by probiotics, studies have revealed that many bacterial strains regulate innate and adaptive immunity either directly engaging immune cells of the host body or indirectly by blocking the entry of pathogens and viruses into the host body. In this overview, we will talk about how probiotics affect immunity by promoting the creation of tight junctions (TJs), raising mucin secretion, and improving the cytotoxicity of macrophages and Natural Killer (NK) cells. The discussion will give us a holistic idea about immunomodulation by gut microbiota (GM) and provide an opportunity to use the information for human welfare.
Keywords: Cytokines, Dysbiosis, Gut Microbiota, Immunomodulation, Macrophages, NK cells, Probiotics
References
Anderson, R.C., Cookson, A.L., McNabb, W.C., Park, Z., McCann, M.J., Kelly, W.J., Roy, N.C. (2010). Lactobacillus plantarum MB452 enhances the function of the intestinal barrier by increasing the expression levels of genes involved in tight junction formation. BMC Microbiol 10(316). DOI: 10.1186/1471-2180-10-316.
Arboleya, S., Watkins, C., Stanton, C., & Ross, R. P. (2016). Gut Bifidobacteria populations in human health and aging. Frontiers in Immunology,7(1204). https://doi.org/10.3389/fmicb.2016.01204.
Azad, M. A. K., Sarker, M., Li, T., & Yin, J. (2018). Probiotic Species in the Modulation of Gut Microbiota: An Overview. Biomed Research International, 1–8. https://doi. org/10.1155/2018/9478630.
Backhed, F., Ley, R. E., Sonnenburg, J. L., Peterson, D. A., & Gordon, J. I. (2005). Host bacterial mutualism in the human intestine. Science, 307(5717), 1915–1920. https:// doi.org/10.1126/science.1104816.
Bernardeau, M., Lehtinen, M. J., Forssten, S. D., & Nurminen, P., (2017). Importance of the gastrointestinal life cycle of Bacillus for probiotic functionality. Journal of Food Science and Technology, 54(8), 2570–2584. https://doi.org/10.1007/s13197-017-2688-
Blaak, E. E., Canfora, E. E., Theis, S., Frost, G., Groen, A. K., Mithieux, G.,Verbeke, K. (2020). Short chain fatty acids in the human gut and metabolic health. Benef Microbes, 11(5), 411–455. https://doi.org/10.3920/BM2020.0057.
Casula, G., & Cutting, S. M. (2002). Bacillus probiotics: Spore germination in the gastrointestinal tract. Applied and Environment Microbiology, 68(5), 2344–2352. https://doi.org/10.1128/aem.68.5.2344-2352.2002.
Catinean, A., Neag, A. M., Nita, A., Buzea, M., & Buzoianu, A. D. (2019). Bacillus spp. spores-a promising treatment option for patients with irritable bowel syndrome. Nutrients, 11(9). https://doi.org/10.3390/nu11091968.
Catinean, A., Neag, M. A., Krishnan, K., Muntean, D. M., Bocsan, C. I., Pop, R. M., Buzoianu, A. D. (2020). Probiotic Bacillus spores together with amino acids and immunoglobulins exert protective effects on a rat model of ulcerative colitis. Nutrients, 12(12), 3607. https://doi.org/10.3390/nu12123607.
Cutting, S. M. (2011). Bacillus probiotics. Food Microbiology, 28(2), 214–220. https://doi. org/10.1016/j.fm.2010.03.007.
de Goffau, M. C., Luopajarvi, K., Knip, M., Ilonen, J., Ruohtula, T., Harkonen, T., Vaarala, O. (2013). Fecal microbiota composition differs between children with beta-cell autoimmunity and those without. Diabetes, 62(4), 1238–1244. https://doi. org/10.2337/db12-0526.
Duysburgh, C., Van den Abbeele, P., Krishnan, K., Bayne, T. F., & Marzorati, M. (2019). A synbiotic concept containing spore-forming Bacillus strains and a prebiotic fiber blend consistently enhanced metabolic activity by modulation of the gut microbiome in vitro. International Journal of Pharmaceutics: X, 1, 100021.https://doi.org/10.1016/j.ijpx.2019.100021.
El Hage, R., Hernandez-Sanabria, E., Calatayud Arroyo, M., Props, R., & Van de Wiele, T. (2019). Propionate-producing consortium restores antibiotic-induced dysbiosis in a dynamic in vitro model of the human intestinal microbial ecosystem. Frontiers in Microbiology, 10(1206).https://doi.org/10.3389/fmicb.2019.01206.
Faille, C., Membre, J. M., Kubaczka, M., & Gavini, F. (2002). Altered ability of Bacillus cereus spores to grow under unfavorable conditions (presence of nisin, low temperature, acidic pH, presence of NaCl) following heat treatment during sporulation. Journal of Food Protection, 65(12), 1930–1936. https://doi.org/ 10.4315/0362-028x-65.12.1930.
Feng, Y., Wang, Y., Wang, P., Huang, Y., & Wang, F. (2018). Short-chain fatty acids manifest stimulative and protective effects on intestinal barrier function through the inhibition of NLRP3 inflammasome and autophagy. Cellular Physiology and Biochemistry, 49(1), 190–205. https://doi.org/10.1159/000492853.
Finucane, M. M., Sharpton, T. J., Laurent, T. J., Pollard, K. S., & Heimesaat, M. M. (2014). A taxonomic signature of obesity in the microbiome? Getting to the guts of the matter. PLoS ONE, 9(1), e84689. https://doi.org/10.1371/journal. pone.0084689.
Fukuda, S., Toh, H., Hase, K., Oshima, K., Nakanishi, Y., Yoshimura, K., Ohno, H. (2011). Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature, 469(7331), 543–547. https://doi.org/10.1038/ nature09646.
Hyser, M., James V. (2019). Bifidobacterium dentium Fortifies the Intestinal Mucus Layer via Autophagy and Calcium Signaling Pathways. mBio 10: e01087-19. DOI: 10.1128/mBio.01087-19.
Larsen, N., Vogensen, F. K., van den Berg, F. W. J., Nielsen, D. S., Andreasen, A. S., Pedersen, B. K., Bereswill, S. (2010). Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS ONE, 5(2), e9085. https://doi.org/ 10.1371/journal.pone.0009085.
Magne, F., Gotteland, M., Gauthier, L., Zazueta, A., Pesoa, S., Navarrete, P., & Balamurugan, R. (2020). The Firmicutes/Bacteroidetes ratio: A relevant marker of gut dysbiosis in obese patients? Nutrients, 12(5). https://doi.org/10.3390/ nu12051474.
Manichanh, C., Rigottier-Gois, L., Bonnaud, E., Gloux, K., Pelletier, E., Frangeul, L., Dore, J. (2006). Reduced diversity of faecal microbiota in Crohn’s disease revealed by a metagenomic approach. Gut, 55(2), 205–211. https://doi.org/10.1136/ gut.2005.073817.
Marzorati, M., Abbeele, P. V. D., Bubeck, S. S., Bayne, T., Krishnan, K., Young, A., DeSouza, A. (2020). Bacillus subtilis HU58 and Bacillus coagulans SC208 probiotics reduced the effects of antibiotic-induced gut microbiome dysbiosis in an M-SHIME ((R)) model. Microorganisms, 8(7). https://doi.org/10.3390/ microorganisms8071028.
McFarlin, B. K., Henning, A. L., Bowman, E. M., Gary, M. A., & Carbajal, K. M. (2017). Oral spore-based probiotic supplementation was associated with reduced incidence of post-prandial dietary endotoxin, triglycerides, and disease risk biomarkers. World Journal of Gastrointestinal Pathophysiology, 8(3), 117–126. https://doi.org/10.4291/ wjgp.v8.i3.117.
Menni, C., Lin, C., Cecelja, M., Mangino, M., Matey-Hernandez, M. L., Keehn, L.,Valdes, A. M. (2018). Gut microbial diversity is associated with lower arterial stiffness in women. European Heart Journal, 39(25), 2390–2397. https://doi.org/ 10.1093/eurheartj/ehy226.
Molly, K., Vande Woestyne, M., & Verstraete, W. (1993). Development of a 5-step multichamber reactor as a simulation of the human intestinal microbial ecosystem. Applied Microbiology and Biotechnology, 39(2), 254–258. https://doi.org/10.1007/ BF00228615.
Mortensen, P. B., & Clausen, M. R. (1996). Short-chain fatty acids in the human colon: Relation to gastrointestinal health and disease. Scandinavian Journal of Gastroenterology. Supplement, 31(sup216), 132–148. https://doi.org/10.3109/ 00365529609094568.
Mosca, A., Leclerc, M., & Hugot, J. P. (2016). Gut microbiota diversity and human diseases: Should we reintroduce key predators in our ecosystem? Frontiers in Microbiology, 7(455). https://doi.org/10.3389/fmicb.2016.00455.
Neag, M. A., Catinean, A., Muntean, D. M., Pop, M. R., Bocsan, C. I., Botan, E. C., & Buzoianu, A. D. (2020). Probiotic Bacillus spores protect against acetaminophen-induced acute liver injury in rats. Nutrients, 12(3), 632. https://doi.org/10.3390/ nu12030632.
Picard, C., Fioramonti, J., Francois, A., Robinson, T., Neant, F., & Matuchansky, C. (2005). Review article: Bifidobacteria as probiotic agents – physiological effects and clinical benefits. Alimentary Pharmacology & Therapeutics, 22(6), 495–512. https:// doi.org/10.1111/j.1365-2036.2005.02615.x.
Possemiers, S., Verthe, K., Uyttendaele, S., & Verstraete, W. (2004). PCR-DGGE-based quantification of stability of the microbial community in a simulator of the human intestinal microbial ecosystem. FEMS Microbiology Ecology, 49(3), 495–507. https:// doi.org/10.1016/j.femsec.2004.05.002.
Pyne, D. B., West, N. P., Cox, A. J., & Cripps, A. W. (2015). Probiotics supplementation for athletes – clinical and physiological effects. European Journal of Sport Science, 15(1), 63–72.https://doi.org/10.1080/17461391.2014.971879.
Rinttila, T., Kassinen, A., Malinen, E., Krogius, L., & Palva, A. (2004). Development of an extensive set of 16S rDNA-targeted primers for quantification of pathogenic and indigenous bacteria in faecal samples by real-time PCR. Journal of Applied Microbiology, 97(6), 1166–1177. https://doi.org/10.1111/j.1365-2672.2004.02409.x.
Sasaki, K., Sasaki, D., Inoue, J., Hoshi, N., Maeda, T., Yamada, R., & Kondo, A. (2020). Bacillus coagulans SANK 70258 suppresses Enterobacteriaceae in the microbiota of ulcerative colitis in vitro and enhances butyrogenesis in healthy microbiota. Applied Microbiology and Biotechnology, 104(9), 3859–3867. https://doi.org/10.1007/ s00253-020-10506-1.
Scher, J. U., Ubeda, C., Artacho, A., Attur, M., Isaac, S., Reddy, S. M., Abramson, S. B. (2015). Decreased bacterial diversity characterizes the altered gut microbiota in patients with psoriatic arthritis, resembling dysbiosis in inflammatory bowel disease. Arthritis & Rheumatology, 67(1), 128–139. https://doi.org/10.1002/art.38892.
Schippa, S., Iebba, V., Barbato, M., Di Nardo, G., Totino, V., Checchi, M., Conte, M. (2010). A distinctive ’microbial signature’ in celiac pediatric patients. BMC Microbiology, 10(1), 175. https://doi.org/10.1186/1471-2180-10-175.
Schloss, P. D., & Westcott, S. L. (2011). Assessing and improving methods used in operational taxonomic unit-based approaches for 16S rRNA gene sequence analysis. Applied and Environment Microbiology, 77(10), 3219–3226. https://doi.org/10.1128/ AEM.02810-10.
Sidhu, M., & van der Poorten, D. (2017). The gut microbiome. Australian Family Physician, 46(4), 206–211. https://www.ncbi.nlm.nih.gov/pubmed/28376573.
Suzuki, H., Watabe, J., Takeuchi, H., Tadano, Y., Masuda, S., & Maruta, K. (2004). Effect of Bacillus subtilis C-3102 intakes on the composition and metabolic activity of fecal microflora of humans. Journal of Intestinal Microbiology, 18(2), 93–99. https://doi. org/10.11209/jim.18.93.
Sze, M. A., & Schloss, P. D. (2016). Looking for a signal in the noise: Revisiting obesity and the microbiome. mBio, 7(4), e01018–01016. https://doi.org/10.1128/ mBio.01018-16.
Vincent, C., Stephens, D. A., Loo, V. G., Edens, T. J., Behr, M. A., Dewar, K., & Manges, A. R. (2013). Reductions in intestinal Clostridiales precede the development of nosocomial Clostridium difficile infection. Microbiome, 1(1), 18. https://doi.org/ 10.1186/2049-2618-1-18.
Walters, W. A., Xu, Z., & Knight, R. (2014). Meta-analyses of human gut microbes associated with obesity and IBD. FEBS Letters, 588(22), 4223–4233. https://doi.org/ 10.1016/j.febslet.2014.09.039.
Wang, M., Karlsson, C., Olsson, C., Adlerberth, I., Wold, A. E., Strachan, D. P., Ahrn´e, S. (2008). Reduced diversity in the early fecal microbiota of infants with atopic eczema. The Journal of Allergy and Clinical Immunology, 121(1), 129–134. https://doi.org/10.1016/j.jaci.2007.09.011.
Wang, Q., Garrity, G. M., Tiedje, J. M., & Cole, J. R. (2007). Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied and Environment Microbiology, 73(16), 5261–5267. https://doi.org/10.1128/ AEM.00062-07.
Windey, K., De Preter, V., & Verbeke, K. (2012). Relevance of protein fermentation to gut health. Molecular Nutrition & Food Research, 56(1), 184–196. https://doi.org/ 10.1002/mnfr.v56.110.1002/mnfr.201100542.
Yang, H. J., Kwon, D. Y., Kim, H. J., Kim, M. J., Jung, D. Y., Kang, H. J., Park, S. (2015). Fermenting soybeans with Bacillus licheniformis potentiates their capacity to improve cognitive function and glucose homeostaisis in diabetic rats with experimental Alzheimer’s type dementia. European Journal of Nutrition, 54(1), 77–88. https://doi.org/10.1007/s00394-014-0687-y.
Yoshida, N., Yamashita, T., & Hirata, K.-I. (2018). Gut microbiome and cardiovascular diseases. Diseases, 6(3), 56. https://doi.org/10.3390/diseases6030056.
Zhang, T., Li, Q., Cheng, L., Buch, H., & Zhang, F. (2019). Akkermansia muciniphila is a promising probiotic. Microbial Biotechnology, 12(6), 1109–1125. https://doi.org/ 10.1111/mbt2.v12.610.1111/1751-7915.13410.
How to cite this article
Sarkar, D. and Mitra, S. (2022). An overview on gut microbiota and its role in direct and indirect immunomodulation. Science Archives, Vol. 3(4), 268-279. https://doi.org/10.47587/SA.2022.3405
License Article Metadata
This work is licensed under a Creative Commons Attribution 4.0 International License.