Anamika Biswas, Debarati Roy, Mousumi Dutta and Goutam Paul
Molecular Neurotoxicology Laboratory, Department of Physiology, University of Kalyani, Kalyani, Nadia-741235, West Bengal, India
Corresponding author:goutampaul.ku@gmail.com
Received: July 26, 2022/ Revised: Aug 26, 2022/ Accepted: Aug 29, 2022
Abstract
The presence of metanil yellow (MY), a synthetic azo-dye, has been scientifically proved in different food products. It is mostly used in unorganized food industries as a food colorant due to its cost-effectiveness. Humans are often exposed to MY through ingested food products, colored with MY. The toxic effects of MY have already been reported in animal models. Till date, the effects of MY on heart ventricular functions have not been reported. So, our study was aimed to evaluate the effects of MY on the functions of heart ventricular muscle in rat model in vivo. We have observed significant (P<0.05) increase in the level of malondialdehyde and content of reduced glutathione in heart ventricular muscle of MY exposed groups of rats in comparison with control rats. The enzymatic activities of cytosolic copper-zinc-superoxide dismutase, glutathione peroxidase, glutathione reductase; and mitochondrial manganese superoxide dismutase and ATPase were significantly (P<0.05) increased in exposed groups. Whereas the activities of cytosolic catalase and acetylcholinesterase; mitochondrial catalase, Krebs cycle and electron transport chain enzymes were decreased significantly (P<0.05). Furthermore, myodegeneration of heart ventricular muscle and myofibrillar mitochondria of exposed rats have been identified through prominent signs of lesions and disintegrations by scanning electron microscopic and histological studies. So, from our observations we can conclude that MY depresses the contraction mediated ejection functions of heart, probably by inducing fibrillar and mitochondrial oxidative stress in heart ventricular muscle. The results obtained through this study in rat model could be extrapolated in humans.
Keywords Metanil yellow, Heart ventricular muscle, Oxidative stress, Myofibrillar mitochondria, AChE activity
References
Anjali, V. R., Shehna, M. S., Reshmi, S., Remya, S., &Aruna, D. (2021). Bisphenol S induced metabolic disruption in a freshwater fish, Oreochromis Mossambicus. Journal of Aquatic Biology and Fisheries, 9, 68-75.
Ashida, H., Hashimoto, T., Tsuji, S., Kanazawa, K., &Danno, G. (2000). Synergistic effects of food colors on the toxicity of 3-amino-1,4-dimethyl-5H-pyrido[4,3-b]indole (Trp-P-1) in primary cultured rat hepatocytes. Journal of Nutritional Science and Vitaminology, 46(3), 130-136. doi: https://doi.org/10.3177/jnsv.46.130.
Ayala, A., Muñoz, M. F., & Argüelles, S. (2014). Lipid Peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxidative Medicine and Cellular Longevity, 2014, 360438. doi: https://dx.doi.org/10.1155/2014/360438.
Bancroft, J. D., & Gamble, M. (2008). Theory and practice of histological techniques (Bancroft & Gamble) (6th ed). Churchill Livingstone Elsevier Publisher; p. 121-134. ISBN: 978-0-443-10279-0.
Birben, E., Sahiner, U. M., Sackesen, C., Erzurum, S., &Kalayci, O. (2012). Oxidative stress and antioxidant defence. World Allergy Organization Journal, 5(1), 9-19. doi: https://doi.org/10.1097/WOX.0b013e3182439613.
Buege, J. A., & Aust, S. D. (1978). Microsomal lipid peroxidation. In S. Fleischer & L. Packer (Ed.), Methods in enzymology, Biomembranes, Part C: Biological oxidations: Microsomal, cytochrome P450, and other hemoprotein systems (Vol. 52, pp. 302-310). New York: Academic Press. doi: https://doi.org/10.1016/S0076-6879(78)52032-6.
Cao, J. W., Duan, S.Y., Zhang, H. X., Chen, Y., & Guo, M. (2020). Zinc deficiency promoted fibrosis via ROS and TIMP/MMPs in the myocardium of mice. Biological Trace Element Research, 196(1), 145-152. doi: https://doi.org/10.1007/s12011-019-01902-4.
Cheeseman, K. H. (1993). Mechanism and effects of lipid peroxidation. Molecular Aspects of Medicine, 14(3), 191-197. doi: https://doi.org/10.1016/0098-2997(93)90005-x.
Chelikani, P., Fita, I., & Loewen, P. C. (2004). Diversity of structures and properties among catalase. Cellular and Molecular Life Science, 61 (2), 192-208. doi: https://doi.org/10.1007/s00018-003-3206-5.
Cheng, S. B., Liu, H. T., Chen, S. Y., Lin, P. T., Lai, C. Y., & Huang, Y. C. (2017). Changes of oxidative stress, glutathione and its dependent antioxidant enzyme activities in patients with hepatocellular carcinoma before and after tumor resection. PLOS One, 12(1), e0170016. doi: https://doi.org/10.1371/journal.pone.0170016.
Chrétine, D., Pourrier, M., Bourgeron, M., Séné, M., Rötig, A., Munnich, A., & Rustin, P. (1995). An improved spectrophotometric assay of pyruvate dehydrogenase in lactate dehydrogenase contaminated mitochondrial preparations from human skeletal muscles. ClinicaChimica Acta, 240(2), 129-136. doi: https://doi.org/10.1016/0009-8981(95)06145-6.
D’Oria, R., Schipani, R., Leonardini, A., Natalicchio, A., Perrini, S., Cignarelli, A., Laviola, L., &Giorgino, F. (2020). The Role of Oxidative Stress in Cardiac Disease: From Physiological Response to Injury Factor. Oxidative Medicine and Cellular Longevity, 2020, 5732956:1-9. doi: https://doi.org/10.1155/2020/5732956.
Dasí, F., Amor, M., Sanz, F., Franch, P. C., Navarro-García, M. M. N., &Escribano, A. (2013). Oxidative stress in serum of patients with alpha-1 antitrypsin deficiency. European Respiratory Journal, 42, 1488.
Dixit, S., Purshottam, S. K., Khanna, S. K., & Das, M. (2011). Usage pattern of synthetic food colours in different states of India and exposure assessment through commodities preferentially consumed by children. Food Additives and Contaminants. Part A, chemistry, Analysis, Control, Exposure and Risk Assessment, 28(8), 996-1005. dio: https://doi.org/10.1080/19440049.2011.580011.
Duncan, M. J., & Fraenkel, D. G. (1979). Alpha-ketoglutarate dehydrogenase mutant of Rhizobium meliloti. Journal of Bacteriology, 137(1), 415-419. doi: https://doi.org/10.1128/jb.137.1.415-419.1979.
Dutta, M., Ghosh, A. K., Chattopadhyay, A., Mohan, V., Thakurdesai, P., &Bhowmick D. (2014a). Trigonelline [99%] protects against copper-ascorbate induced oxidative damage to aortic mitochondria in vitro: involvement in antioxidant mechanism(s). International Journal of Pharmaceutical Science Research, 29(2), 312-323.
Dutta, M., Ghosh, A. K., Jain, G., Rangari, V., Chattopadhyay, A., Das, T., Bhowmick, D., & Bandyopadhyay, D. (2014b). Andrographolide, one of the major components of Andrographis paniculate protects against copper-ascorbate induced oxidative damage to goat cardiac mitochondria in-vitro. International Journal of Pharmaceutical Science Review and Research, 28(1), 237-247.
Dutta, M., Ghosh, A. K., Rudra, S., Bandyopadhyay, D., Guha, B., Dutta, S., & Chattopadhyay, A. (2014c). Human placental mitochondria is a better model for studies on oxidative stress in vitro: A comparison with goat heart mitochondria. Journal of Cell and Tissue Research, 14(1), 3997-4007.
Dutta, M., Ghosh, D., Ghosh A. K., Rudra, S., Bose, G., & Dey, M. (2014d). High fat diet aggravates arsenic induced oxidative stress in rat heart and liver. Food and Chemical Toxicology, 66, 262-277. doi: http://dx.doi.org/10.22159/ajpcr.2018.v11i9.26750.
Dutta, M., & Paul, G. (2018). Bisphenol A Dose-and time-dependently induces oxidative stress in rat liver mitochondria ex-vivo.Asian Journal of Pharmaceutical and Clinical Research, 11(9), 98-105. doi: https://doi.org/10.22159/ajpcr.2018.v1119.26750.
Dutta, M., & Paul, G. (2019). Gallic acid protects rat liver mitochondria ex vivo from bisphenol A induced oxidative stress mediated damages. Toxicology Reports, 6, 578-589. doi: https://doi.org/1016/j.toxrep.2019.06.011.
EI-Wahab, H. M. F. A., &Moram, G. S. E. D. (2013). Toxic effects of some synthetic food colorants and/or flavour additives on male rats. Toxicology and Industrial Health, 29(2), 224-232. doi: https://doi.org/10.1177/0748233711433935.
Ellman, G. L., Courtney, K. D., Andres, V., & Featherstone, R. M. (1961). A new and rapid colorimeter determination of acetylcholinesterase activity. Biochemical Pharmacology, 7(2), 88-95. doi: https://doi.org/10.1016/0006-2952(61)90145-9.
Elwan, W. M. (2018). Effect of long-term administration of metanil yellow on the structure of cerebellar cortex of adult male albino rat and the possible protective role of anise oil: A histological and immunohistochemical study. Egyptian Journal of Histology, 41(1), 27-38. doi: https://doi.org/10.21608/EJH.2018.7519.
Escribano, A., Amor, M., Pastor, S., Castillo, S., Sanz, F., Codoñer-France, P., &Dasí, F. (2015). Decreased glutathione and low catalase activity contribute to oxidative stress in children with α-1 antitrypsin deficiency. Thorax, 70(1), 82-83. doi: https://doi.org/10.1136/thoraxjnl-2014-205898.
Frampton, J., Conkie, D., Chambers, I., McBain, W., Dexter, M., & Harrison, P. (1987). Changes in minor transcripts from the alpha 1 and beta major globin and glutathione peroxidase genes during erythropoiesis. Nucleic Acids Research, 15(9), 3671-3688. doi: https://doi.org/10.1093/nar/15.9.3671.
Ghosh, D., Singha, P. S., Firdaus, S. B., & Ghosh, S. (2017). Metanil yellow: The toxic food colorant. Asian Pacific Journal of Health Sciences, 4(4), 65-66. doi: https://doi.org/10.21276/apjhs.2017.4.4.16.
Gibson, G. E., Park, L. C., Sheu, K. F., Blass, J. P., &Calingasan, N. Y. (2000). The alpha-ketoglutarate dehydrogenase complex in neuro degeneration. Neurochemistry International, 36(2), 97-112. doi: https://doi.org/10.1016/s0197-0186(99)00114-x.
Gibson, G. E., Sheu, K. F., Blass, J. P., Baker, A., Carlson, K. C., Harding, B., &Parrino, P. (1988). Reduced activities of thiamine-dependent enzymes in the brains and peripheral tissues of patients with Alzheimer’s disease. Archives of Neurology, 45(8), 836-840. doi: https://doi.org/10.1001/archneur.1988.00520320022009.
Goyal, N., & Srivastava, V. M. (1995). Oxidation and reduction of cytochrome-c by mitochondrial enzymes of Setariacervi. Journal of Helminthology, 69(1), 13-17. doi: https://doi.org/10.1017/s0022149x00013778.
Gupta, S., Sundarrajan, M., & Rao, K. V. K. (2003). Tumor promotion by metanil yellow and malachite green during rat hepatocarcinogenesis is associated with dysregulated expression of cell cycle regulatory proteins. Teratogenesis, Carcinogenesis, and Mutagenesis, 1, 301-312. doi: https://doi.org/10.1002/tcm.10056.
Ighodaro, O. M., &Akinloye, O. A. (2018). First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria Journal of Medicine, 54(4), 287-293. doi: https://doi.org/10.1016/j.ajme.2017.09.001.
Jain, R., Sharma, N., &Radhapyari, K. (2009). Removal of hazardous azo dye metanil yellow from industrial waste water using electrochemical technique. European Journal of Water Quality, 27/28, 43-52.
Khanna, S. K., & Singh, G. B. (1973). Antitesticular effect of metanil yellow in guineapigs. Journal of Food Science and Technology, 10, 75-76.
Khanna, S. K., Srivastava, L. P., & Singh, G. B. (1978). Toxicity studies on metanil yellow in rats. Environmental Research, 15(2), 227-231. doi: https://doi.org/10.1016/0013-9351(78)90099-3
Kitada, M., Xu, J., Ogura, Y., Monno, I., &Koya, D. (2020). ManganaseSuoeroxide Dismutase Dysfunction and the pathogenesis of Kidney Disease. Frontiers in Physiology, 11, 1-16. doi: https://doi.org/10.3389/fphys.2020.00755.
Larosa, V., & Remacle, C. (2018). Insight into the respiratory chain and oxidative stress. Bioscience Reports, 38(5), 2-32. doi: https://doi.org/10.1042/BSR20171492.
Lee, S. M., Koh, H. J., Park, D. C., Song, B. J., Huh, T. L., & Park, J. W. (2002). Cytosolic NADP (+)-dependent isocitrate dehydrogenase status modulates oxidative damage to cells. Free Radical Biology and Medicine, 32(11), 1185-1196. doi: https://doi.org/10.1016/s0891-5849(02)00815-8.
Lisa, F. D., Menabò, R., Canton, M., Barile, M., &Bernardi, P. (2001). Opening of the mitochondrial permeability transition pore causes depletion of mitochondrial and cytosolic NAD+ and is a causative event in the death of myocytes in postischemic reperfusion of the heart. Journal of Biological Chemistry, 276(4), 2571-2575, doi: https://doi.org/10.1074/jbc.M006825200.
Liu, H., Wu, J., Yao, J. Y., Wang, H., & Li, S. T. (2017). The role of oxidative stress in decreased acetylcholinesterase activity at the neuromascular junction of the diaphragm during Sepsis. Oxidative Medicine and Cellular Longevity, 2017, 9718615. doi: https://doi.org/10.1155/2017/9718615.
Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the folin phenol reagent. Journal of Biological Chemistry, 193, 265-275. doi: https://doi.org/10.1016/S0021-9258(19)52451-6.
Maestro, R. D., & McDonald, W. (1987). Distribution of superoxide dismutase, glutathione peroxidase and catalase in developing rat brain. Mechanisms of Ageing and Development, 41(1), 29-38. doi: https://doi.org/10.1016/0047-6374(87)90051-0.
Marklund, S. L. (1984). Extracellular superoxide dismutase and other superoxide dismutase isoenzymes in tissue from nine mammalian species. Biochemical Journal, 222(3), 649-655. doi: https://doi.org/10.1042/bj2220649.
Marklund, S., &Marklund, G., (1974). Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. European Journal of Biochemistry, 47(3), 469-474. doi: https://doi.org/10.1111/j.1432-1033.1974.tb03714.x.
Martin, E., Rosenthal, R. E., &Fiskum, G. (2005). Pyruvate dehydrogenase complex: metabolic link to ischemic brain injury and target of oxidative stress. Journal of Neuroscience Research, 79(1-2), 240-247. doi: https://doi.org/10.1002/jnr.20293.
Mehrotra, N. K., & Singh, G. B. (1974). Haematological studies in rats fed with Metanil Yellow. Environmental Physiology and Biochemistry, 4(5), 232-235. ISSN/ISBN: 0300-5429. PMID: 4461274.
Melissinos, K. G., Delidou, A. Z., Varsou, A. G., Begietti, S. S., & Drivas, G. J. (1981). Serum and erythrocyte glutathione reductase activity in chronic renal failure. Nephron, 28(2), 76-79. doi: https://doi.org/10.1159/000182115.
Mitchell, P., (1961). Coupling of Phosphorylation to Electron and Hydrogen Transfer by a Chemi-Osmotic type of Mechanism. Nature, 191, 144-148. doi: https://doi.org/10.1038/191144a0.
Mondal, M., Sarkar, K., Nath, P. P., & Paul, G. (2017). Monosodium glutamate potentiates the force of contraction of uterine smooth muscle in rats by augmenting acetylcholine mediated neuromuscular transmission. International Journal of Pharmaceutical Sciences Research, 45(1), 238-241. doi: https://doi.org/10.1016/j.repbio.2018.01.006.
Mukherjee, D., Ghosh, A.K., Dutta, M., Mitra, E., Mallick, S., Saha, B., & Reiter, R. J. (2015). Bandyopadhyay D. Mechanisms of isoproterenol-induced cardiac mitochondrial damage: protective actions of melatonin. Journal of Pineal Research, 58(3), 275-290. doi: https://doi.org/10.1111/jpi.12213.
Mylonas, C., Kouretas, D. (1999). Lipid peroxidation and tissue damage. In Vivo, 13(3), 295-309. PMID: 10459507.
Nagaraja, T. N., &Desiraju, T. (1993). Effects of chronic consumption of metanil yellow by developing and adult rats on brain regional levels of nor adrenaline, dopamine and serotonin, on acetylcholinesterase activity and on operant conditioning. Food and Chemical Toxicology, 31(1), 41-44. doi: https://doi.org/10.1016/0278-6915(93)90177-2.
Nath, P. P., Sarkar, K., Mondal, M., & Paul, G. (2016). Metanil yellow impairs the estrous cycle physiology and ovarian folliculogenesis in femalr rats. Environmental Toxicology, 31(12), 2057-2067. doi: https://doi.org/10.1002/tox.22205.
Nath, P. P., Sarkar, K., Tarafder, P., & Mondal, M. (2015). Practice of using metanil yellow as food colour to process food in unorganized sector of West Bengal- A case study. International Food Research Journal, 22(4), 1424-1428.
Noori, S. (2012). An overview of oxidative stress and antioxidant defence system. Journal of Clinical & Cellular Immunology, 1(8), 1-9. doi: https://doi.org/10.4172/scientificreports.413.
Nooris, K. M., Okie, W., Kimb, W. K., Adhikari, R., Yoo, S., King, S., &Pazdro, R. (2016). A high-fat diet differentially regulates glutathione phenotypes in the obesity prone mouse strains DBA/2J, C57BL16J & AKR/J. Nutrition Research, 36(12), 1316-1324. doi: https://doi.org/10.1016/j.nutres.2016.10.004.
O’Malley, B. W., Mengel, C. E., Meriwether, W. D., & Zirkle, L. G. (1966). Inhibition of Erythrocyte Acetylcholinesterase by Peroxides. Biochemistry, 5(1), 40-45. doi: https://doi.org/10.1021/bi00865a006.
Paglia, D. E., & Valentine, W. N. (1967). Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. Translational Research-Journal of Laboratory and Clinical Medicine, 70(1), 158-169. doi: https://doi.org/10.5555/uri:pii:0022214367900765.
Pal, S., & Paul, G. (2021). A comparative study on the toxicity of Bisphonol A (BPA) and Bisphenol S (BPS) on heart ventricular muscle. Science Archives, 2(2), 84-89. doi: https://dx.doi.org/10.47587/SA.2021.2204.
Patekar, D., Kheur, S., Bagul, N., Kulkarni, M., Mahalle, A., Ingle, Y., &Dhas, V. (2013). Antioxidant Defence System. Oral Maxillofacial Pathology Journal (OMPJ), 4(1), 309-315.
Penny, C. L., & Bolger, G. (1978). A simple microassay for inorganic phosphate, II. Analytical Biochemistry, 89(1), 297-303. doi: https://doi.org/10.1016/0003-2697(78)90754-6.
Pisoschi, A. M., Pop, A. (2015). The role of antioxidants in the chemistry of oxidative stress: A review. European Journal of Medicinal Chemistry, 5(97), 55-74. doi: https://doi.org/10.1016/j.ejmech.2015.04.040.
Pizzino, G., Irrera, N., Cucinotta, M., Pallio, G., Mannino, F., Arcoraci, V., Squadrito, F., Altavilla, D., &Bitto, A. (2017). Oxidative stress: Harms and Benefits for Human Health. Oxidative Medicine and Cellular Longevity, 2017, 8416763. doi; https://doi.org/10.1155/2017/8416763.
Prasad, O. M., & Rastogi, P. B. (1983). Haematological changes induced by feeding a common food colour, metanil yellow in albino mice. Toxicology Letters, 16(1-2), 103-107. doi: httpe://doi.org/10.1016/0378-4274(83)90017-6.
Prasad, O., & Rastogi, P. B. (1982). Carcinogenic effect of food iso-colourMetanil yellow on albino mice. National Academy Science Letters B (India), 5, 205-207.
Raha, S., & Robinson, B. H. (2000). Mitochondria, oxygen free radicals, disease and aging. Trends in Biochemical Sciences, 25(11), 502-508. doi: https://doi.org/10.1016/S0968-0004(00)01674-1.
Ramachandani, S., Das, M., & Khanna, S. K. (1992). Lipid peroxidation of ultrastructural components of rat liver induced by metanil yellow and orange II, comparison with blend. Toxicology and Industrial Health, 8(1/2), 63-75. doi: https://doi.org/10.11771074823379200800106.
Roy, D., Dutta, M., Mondal, M., Sarkar, K., & Paul, G. (2021). Effect of Bisphenol S (BPS) on the contraction of duodenal visceral smooth muscle ex vivo in rat. Science Archives, 2(2), 99-108. doi: https://dx.doi.org/10.47587/SA.2021.2207.
Sarkar, R., & Ghosh, A. R. (2010). Metanil yellow, a food additive, induces the responses at cellular and sub-cellular organisations of stomach, intestine, liver, and kidney of Heteropneustesfossilis (Bloch). Pollution Research Journal, 29(3), 453-460.
Sarkar, R., & Ghosh, A. R. (2012). Metanil yellow- An azo dye induced histopathological and ultrastructural changes in albino rat (Rattus norvegicus). The Bioscan, 7(1), 427-432.
Saxena, B., & Sharma, S. (2014). Serotologicalchenges induced by blend of sunset yellow, metanil yellow and tartrazine in swiss albino rat, Rattus norvegicus. International Journal of Toxicology, 21, 65-68. doi: https://doi.org/10.4103/0971-6580.128798.
Sedlak, J., & Lindsay, R. H. (1968). Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Analytical Biochemistry, 25, 192-205. doi: https://doi.org/10.1016/0003-2697(68)90092-4.
Singer, T. P., Kearney, E.B., &Ackrell, B. A. (1973). Newer knowledge of the regulatory properties of succinate dehydrogenase. Mechanism in Bioenergetics, 485-498. doi: https://doi.org/10.1016/B978-0-12-068960-6.50039-3.
Singh, R. L. (1996). Effect of protein malnutrition on biochemical parameters of serum and liver of Metanil Yellow exposed rats. Environmental Toxicological Chemistry, 54, 107-113. doi: https://doi.org/10.1080/02772249609358302.
Singh, R. L. (1998). Effect of protein malnutrition on sex organs of metanil yellow exposed male rats. Biomedical and Environmental Sciences, 11(3), 233-242. PMID: 9861482.
Sinha, A. K. (1978). Colorimetric assay of catalase. Analytical Biochemistry, 47(2), 389-394. doi: https://doi.org/10.1016/0003-2697(72)90132-7.
Snezhkina, A. V., Kudryavtseva, A. V., Kardymon, O.L., Savvateeva, M. V., Melnikova, N. V., Krasnov, G. S., & Dmitriev, A. A. (2019). ROS generation and antioxidant defense system in normal and malignant cells. Oxidative Medicine and Cellular Longevity. 2019, 6175804, 1-17. doi: https://doi.org/10.1155/2019/6175804.
Stall, G. E., Visser, J., &Veeger, C. (1969) Purification and properties of glutathione reductase of human erythrocytes. Biochimica et Biophysica Acta (BBA)-Enzymology, 185(1), 39-48. doi: https://doi.org/10.1016/0005-2744(69)90280-0.
Sundarrajan, M., Fernandis, A. Z., Subrahmanyam, G., Prabhudesai, S., Krishnamurty, S. C., & Rao, K. V. (2000). Overexpression of G1/S cycle and PCNA and their relationship to tyrosine phosphorylation during tumer promotion by metanil yellow and malachite green. Toxicology Letters, 116, 119-130. doi: https://doi.org/10.1016/30378-4274(00)00216-2.
Tarafder, P., Sarkar, K., Nath, P. P., & Paul, G. (2013). Inhibition of heart ventricular function of rat by Bisphenol a through oxidative stress induced injury of ventricular tissue. International Journal of Pharma and Bio Sciences, 4(2), b811-820.
Tretter, L., &Vizi, V. A. (2005). Alpha-Ketoglutarate dehydrogenase: A target and generator of oxidative stress. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 360(11464), 2335-2345. doi: https://doi.org/10.1098/rstb.2005.1764.
Tsakiris, S., &Schulpis, K. H. (2000). The effect of galactose metabolic disorders on rat brain acetylcholinesterase activity. Zeitschrift fur Naturforschung. C, Journal of Biosciences, 55(9-10), 852-855. doi: https://doi.org/10.1515/znc-2000-9-1032.
Veeger, C., DerVartanian, D. V., &Zeylemaker, W. P. (1969). [16] Succinate dehydrogenase: [EC 1.3.99.1 Succinate: (acceptor) oxidoreductase]. Methods in Enzymology, 13, 81-90. doi: https://doi.org/10.1016/0076-6879(69)13020-7.
Vega, L. D., Férnandez, R. P., Mateo, M. C. M., Bustamante, J. B., Herrero, A. M., &Munguira, E. B. (2002). Glutathione determination and a study of the activity of glutathione peroxidase, glutathione-transferase, and glutathione-reductase in renal transplants. Renal Failure, 24(4), 421-432. doi: https://doi.org/10.1081/jdi-120006769.
Wills, E. D. (1971). Effects of lipid peroxidation on membrane bound enzymes of the endoplasmic reticulum. Biochemical Journal, 123, 983-991. doi: https://doi.org/10.1042/bj1230983.
Xu, J., Yang, J., Duan, X., Jiang, Y., & Zhang, P. (2014). Increased expression of native cytosolic Cu/Zn superoxide dismutase and ascorbate peroxide improves tolerance to oxidative and chilling stress in cassava (Manihot esculenta Crantz). BMC Plant Biology, 14(1), 208. doi: https://doi.org/10.1186/s12870-014-0208-4.
Yang, G. P., &Dettbarn, W. D. (1998). Lipid peroxidation and changes in cytochrome-c oxidase and xanthine oxidase activity in organophosphorus anticholinesterase induced myopathy. Journal of Physiology-Paris, 92(3-4), 157-161. doi: https://doi.org/10.1016/s0928-4257(98)80002-8.
Zeb, A., & Ullah, F. (2016). A simple spectrophotometric method for the determination of thiobarbituric acid reactive substances in fried fast food. Journal of analytical methods in chemistry, 2016, 9412767, 1-5. doi: https://dx.doi.org/10.1155/2016/9412767.
Zhou, B., & Tian, R. (2018). Mitochondrial dysfunction in pathophysiology of heart failure. Journal of Clinical Investigation, 128(9), 3716-3726. doi: https://doi.org/10.1172/JCI120849.
Zitka, O., Skalickova, Gumulec, J., Masarik, M., Adam, V., Hubalek, J., Trnkova, L., Kruseova, J., Eckschlager, T., &Kizek, R. (2012). Redox status expressed as GSH:GSSG ratio as a marker for oxidative stress in paediatrictumour patients. Oncology Letters, 4(6), 1247-1253. doi: https://doi.org/10.3892/ol.2012.931.
How to cite this article
Biswas, A., Roy, D., Dutta, M. and Paul, G. (2022). Metanil yellow suppresses contraction mediated ejection functions of heart ventricular muscle by inducing fibrillar and mitochondrial oxidative stress. Science Archives, Vol. 3 (3), 181-194.
DOI: https://doi.org/10.47587/SA.2022.3306
Licence Article Metadata
This work is licensed under a Creative Commons Attribution 4.0 International License.