Ali Muayad Sultan  

 Biology Department, College of Education for Women, Tikrit University, Iraq

Received: July 28, 2023/ Revised: Aug 21, 2023/Accepted: Aug 23, 2023

(✉) Corresponding Author: alimusu82@tu.edu.iq

Abstract

This study was conducted on Fischerella muscicola isolated from the Iraqi Tigris River. To determine the impact of Kirkuk crude oil (KCO) in four concentrations (0.25, 0.5, 1 and 2) %v/v as well as Control culture (CC). The biomass was measured as growth by optical density (OD) and estimated the content of Chlorophyll a (Chl a), Phycocyanin pigments (PC) and protein content as an indicator of Physiological activities of F. muscicola for 30 days. The results shown that the KCO 0.25% and 0.5% was less impact on F. muscicola. The growth rate has slowed down and the content of Chl a, PC and protein was limited during initial incubation. Then those increased regularly after the second week of the incubation period, which is the adaptation period for the presence of KCO. It records with KCO 0.25% treatment 0.39, (8.2, 2.5, 96.5) µg/ml for growth, Chl a, PC and protein respectively. These values are higher than the values recorded by the CC. that proved that some petroleum hydrocarbon compounds might support the growth of F. muscicola. Even with KCO 0.5% species was tolerant and grown well, were record 0.27, (7.3, 0.8, 78) µg/ml at day 30 for growth, Chl a, PC and protein respectively. When exposing F. muscicola with impact of KCO 1% and 2% treatments, its requires a longer period for adaptation. As the growth and Chl a, PC and protein were low for the first three weeks of the incubation period. Then the growth rate improved after day 24 of incubation, were recorded 0.112 and 0.069 respectively at day 30. Protein content of F. muscicola was affected by the toxicity of high concentrations of KCO, especially initial of incubation period. However, the F. muscicola resisted pollution efficiently. The presence of oil refineries and an electric power station working with KCO near the Tigris River in the Baiji city made some Species to be tolerant to the influence of petroleum compounds.

Keywords:    Cyanobacteria, Fischerella muscicola, Crude oil Chlorophyll a, Phycocyanin, Protein

References

Adam, G. I. and Duncan, H. J. (1999). Effect of Diesel Fuel on Growth of Selected Plant Species. Environmental geochemistry and health, 21: 353-357.

Agu, K. C., Orji, M. U., Ikele, M. O., Uwanta, L. I. and Onyeneho, (2022) Hydrocarbon Biodegradation Potential of Cyanobacteria in Oil Polluted Soil. International Journal of Trend in Scientific Research and Development (IJTSRD), Volume 6, 2456 – 6470.

Bennett, A., & Bogorad, L. (1973). Complementary chromatic adaptation in a filamentous blue-green alga. The Journal of cell biology, 58(2), 419-435.‏

Cerniglia, C. E. (1992). Biodegradation of polycyclic hydrocarbons. Biodegradation, Vol. 3: 351-368.

Cerniglia, C. E., Gibson, D. T. and Van Baalen, C. (1979). Algal oxidation of aromatic hydrocarbons: Formation of 1-naphthol from naphthalene by Agmenellum quadruplicatum, strain PR-6. Biochem Biophys Res Comm 88: 50-58.

Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K., Stackebrandt, E. (2006). The Prokaryotes, Third Edition. Springer Science+Business Media, LLC  4:1053–1073.

El-Sheekh, M. M., & Hamouda, R. A. (2014). Biodegradation of crude oil by some cyanobacteria under heterotrophic conditions. Desalination and Water Treatment, 52(7-9), 1448-1454.

Fay, P. (1983). The blue-greens (cyanophyta – cyanobacteria). The institute of biology. Edward Arnold. pp. 1-88.

Galloway, J. N., Dentener, F. J., Capone, D. G., Boyer, E. W., Howarth, R. W., Seitzinger, S. P., Asner, G. P., Cleveland, C. C., Green, P. A. and, Holland, E. A. (2004). Nitrogen cycles: past, present, and future. Biogeochemistry 70: 153–226.

Gibson, C. E. and foy, R. H. (1983). The photosynthesis and growth efficieney of a plank tonic Blue Green Algae oscillatoria redke . Br phycol. J. 18: 39-4.

Guha, S. and Jaffe, P. R. (1996).  Bioavailability of Hydrophobic Compounds Partitioned into the Micellar Phase of Nonionic Surfactants.  Environmental Science and Technology, 30, 1382-1391.

Hajnalka, H., Kovács, A.W., Riddick, C., Présing, M. (2013) Extraction methods for phycocyanin determination in freshwater filamentous Cyanobacteria and their application in a shallow lake. Eur. J. Phycol., 48, 278–286. https://www.researchgate.net/publication/263681411.

https://www.tandfonline.com/doi/full/10.1080/09670262.2013.821525.

Jeffrey, S. W., Mantoura, R. F. C. and Wright, S. W.,  (1997) “Phytoplankton pigments in Oceanography; Guidelines to modern methods sponsored by SCOR and UNESCO,” UNESCO publishing, pp. 181-223, 594-606.

Jia, J., Zong, S., Hu, L., Shi, S., Zhai, X., Wang, B., & Zhang, D. (2017). The dynamic change of microbial communities in crude oil-contaminated soils from oil fields in China. Soil and Sediment Contamination: An International Journal, 26(2), 171-183.

Juhasz, A. L., Britz, M. L. and Stanley, G. A. (1996). Degradation of High Molecular Weight Polycyclic Aromatic Hydrocarbons by Pseudomanas Cepacia.  Biotechnology Letters, 18, 5,577-582.

Khamees, H. S., Sultan, A. M., & Saleem, A. A. (2015). Study the impact of crude oil on some physiological activities of Oscillatoria splendida. Tikrit Journal of Pure Science, 20(3), 57-64.

Khamis, H. S., Sultan, A. M., & Salim, A. A. (2016). Study The Effect of Crude Oil in Some Physiological Parameters in Oscillatoria chlorin. Diyala Journal For Pure Science12(4-part 2).

Kridi, N., Al-Shater, M. S. and Al Zoubi1, M. M. (2021) Isolation and identification of some bacterial isolates from soil contaminated with crude oil and Testing Their Effectiveness. Baghdad Science Journal, 1476-1484. https://dx.doi.org/10.21123/bsj.2021.18.4(Suppl.).1476.

Kurtis, A. (2007). “Extraction of Chlorophyll using Dimethylsulfoxide and Acetone” A Major Qualifying Project Report, pp 12-13.

López, C. V. G., García, M. D. C. C., Fernández, F. G. A., Bustos, C. S., Chisti, Y., & Sevilla, J. M. F. (2010). Protein measurements of microalgal and cyanobacterial biomass. Bioresource technology, 101(19), 7587-7591.

Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J. (1951). Protein measurement with the folin phenol reagent. J. Biol. Chem. Vol. 75: 193-265.

Mackinney, G. (1941) Absorption of light by chlorophyll solutions. J. Biol Chem 140: 315–322.

Manikandavelu, D. and Murugan, T. (2009) Utilization of swine dung in Spirulina production and isolation of phycocyanin, Tamilnadu Journal of Veterinary and Animal Sciences 5(4): 171-173.

Martin, T. C., & Wyatt, J. T. (1974). Comparative physiology and morphology of six strains of stigonematacean blue‐green algae 1. Journal of Phycology, 10(1), 57-65.

Oberholster, P. J., Blaise, C. and Botha, A. M. (2010). Phytobenthos and Phytoplankton Community Changes upon Exposure to Sunflower Oil Spill in a South African Protected Freshwater Wetland. Ecotoxicology, 19, 1426-1439.

Oo, Y. Y. N., Su, M. C., & Kyaw, K. T. (2017). Extraction and determination of chlorophyll content from microalgae. International Journal of Advanced Research and Publications1(5), 298.

Peterson, G. L. (1979). Review of the Folin phenol protein quantitation method of Lowry, Rosebrough, Farr and Randall. Anal. Biochem. 100, 201–220.

Plohl, K. and Leskovsek, H. (2002). Biological degradation of motor oil in water. Acta. Chim. Slov., 49: 279-289.

Rippka, R., Deruelles, J., Waterbury, J. B., Herdman, M., & Stanier, R. Y. (1979). Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Microbiology, 111(1), 1-61.

Rodas, V. L., Martínez, D. C., Salgado, E., Sanz, A. M., & Costas, E. C. (2009). A fascinating example of microalgal adaptation to extreme crude oil contamination in a natural spill in Arroyo Minero, Río Negro, Argentina. In Anales de la Real Academia Nacional de Farmacia (No. 4, pp. 883-900). Real Academia Nacional de Farmacia.

Safari, M., Ahmady-Asbchin, S., & Soltani, N. (2014). The potential of cyanobacterium Schizothrix vaginata ISC108 in biodegradation of crude oil. Iranian Journal of Health and Environment, 7(3), 363-374.‏ https://www.researchgate.net/publication/283905487.

Shayesteh, H., Laird, D. W., Hughes, L. J., Nematollahi, M. A., Kakhki, A. M., & Moheimani, N. R. (2023). Co-Producing Phycocyanin and Bioplastic in Arthrospira platensis Using Carbon-Rich Wastewater. BioTech, 12(3), 49.‏

Soltani, N., Khavarinezhad, R. A., Tabatabaei, Y. S., & Shokravi, S. (2007). Growth and some metabolic features of cyanobacterium fischerella sp. Fs18 in different combined.

Soto, C., Hellebust, J. A. and Hutchinson, T. C. (1977). Effect of Naphthalene and Aqueous Crude Oil Extracts on the Green Flagellate Chlamydomonas angulosa. III. Changes in Cellular Composition. Canadian Journal of Botany, 55, 2765-2777.

Stanier, R. Y., Kunisawa, R., Mandel, M. and CohenBazire, G. (1971). Purification and properties of unicellular bluegreen algae (Order Chroococcales). Bacteriol. Rev. 35: 171205.

Stewart, W. D. (1973). Nitrogen fixation by photosynthetic microorganisms. Ann. Rev. Microbiol. Vol. 27: 283-316.

Sultan, A. M., Khamees, H. S., & Saleem, A. A. (2017). Study the effect of kerosene on some physiological activities in Oscillatoria splendida. Tikrit Journal of Pure Science, 22(1), 52-59.

Sundaram, S., & Soumya, K. K. (2011). Study of physiological and biochemical alterations in cyanobacterium under organic stress. American Journal of Plant Physiology, 6(1), 1-16.

UNEP (2017). Environmental issues in areas retaken from isil mosul, Iraq, rapid scoping mission, july – august 2017, https://wedocs.unep.org/handle/20.500.11822/22434.

Waterborg, J. H. (2009). The Lowry method for protein quantitation. The protein protocols handbook, 7-10.

Whitton, B. A. and Potts, M. (2002). The Ecology of cyanobacteria: their diversity in Time and Space. Kluwer Academic Press, Norwell, MA.

Zachleder, V. and Šetlik, I. (1982). Effect of Irradiance on the Course of RNA Synthesis in the Cell Cycle of Scenedesmus quadricauda. Biologia Plantarum, 24, 341-353.

Zhang, Y., Hsu, H.-H., Wheeler, J. J., Tang, S., Jiang, X. (2020). Emerging investigator series: Emerging biotechnologies in wastewater treatment: From biomolecular engineering to multiscale integration. Environ. Sci. Water Res. Technol, 6, 1967–1985.

   https://pubs.rsc.org/en/content/articlelanding/2020/EW/D0EW00393J.

Zwirglmaier, K., Jardillier, L., Ostrowski, M., Mazard, S., Garczarek, L., Vaulot, D., Not, F., Massana, R., Ulloa, O., Scanlan, D. J. (2008). Global phylogeography of marine Synechococcus and Prochlorococcus reveals a distinct partitioning of lineages among oceanic biomes. Environ Microbiol 10: 147–161.

How to cite this article

Sultan, A. M. (2023). Physiological responses of Fischerella muscicola to kirkuk crude oil exposure: growth, pigment, and protein dynamics in different concentrations. Science Archives, Vol. 4(3), 213-220.. https://doi.org/10.47587/SA.2023.4306

Licence                  Article Metadata

This work is licensed under a Creative Commons Attribution 4.0 International License.

View Details