Raghad Abdullah Hassan¹,², Suhad Saad Mahmood², Basem Ahmed Askar³
¹Biology Department, College of Education, Al-Iraqia University, Iraq
²Department of Biotechnology, Collage of Science, University of Baghdad, Iraq
³Medical City, Unit of Digestive Diseases, Ministry of Health, Baghdad, Iraq
Received: Aug 25, 2023/ Revised: Sept 19, 2023/Accepted: Sep 20, 2023
Abstract
Colorectal cancer (CRC) is a malignant tumor in the digestive system whose incidence and mortality are high-ranking among tumors worldwide. The present work aimed to investigate the role of colibactin-produced isolates of pks+ Escherichia coli in CRC disease. Among 159 specimens, which were subjected to different examinations, a total of 57.36% (n=88) of E. coli isolates were obtained, including 32.08% (n=51) of isolates from patients with CRC, including 21.4% (n=34) from fecal specimens and 10.7% (n=17) from tissue specimens as well as 23.3% (n=37) of isolates were obtained from healthy controls, including 16.4% (n=26) from fecal specimens and 6.92% (n=11) from tissue specimens. Genomic DNA was extracted from 57 selected E. coli isolates, which obtained 20 specimens (10 from CRC patients and 10 from controls) and 37 fecal specimens (21 from CRC patients and 16 from controls) for molecular detections of two genes (uidA and pks). All isolates of E. coli harbored uidA gene, while 11 (55.0%) of isolates were given positive for pks, including 8 (80.0%) from CRC patients and 3 (30.0%) from healthy controls. Immunofluorescence assay (IFA) was utilized to study the effect of pks+ and pks– E. coli isolates on Normal human derived adipose tissue (NHF) cell line for determining the quantification of H2AX expression. The results indicated that there was significant variation in H2AX expression between pks+ E. coli isolate-treated NHF and other groups. However, there was a non-significantly variation in H2AX expression between pks– E. coli isolate treated NHF and untreated NHF (as control) tissues. The results indicated that high effect of pks+ E. coli on H2AX expression in NHF cell line.
Keywords: pks, uidA, Colorectal Cancer, H2AX Expression
References
Adekanmbi, A. O., Akinpelu, M. O., Olaposi, A. V., & Oyelade, A. A. (2020). Diversity of Extended Spectrum Beta-lactamase (ESBL) genes in Escherichia coli isolated from wastewater generated by a Sick Bay located in a University Health Care Facility. Gene Reports, 20, 100738.
Albino, A. P., Jorgensen, E. D., Rainey, P., Gillman, G., Clark, T. J., Gietl, D. & Darzynkiewicz, Z. (2009). γH2AX: A potential DNA damage response biomarker for assessing toxicological risk of tobacco products. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 678(1), 43-52.
Alexander, J. L., Scott, A. J., Pouncey, A. L., Marchesi, J., Kinross, J., & Teare, J. (2018). Colorectal carcinogenesis: An archetype of gut microbiota–host interaction. ecancermedicalscience, 12.
Butt, J., Jenab, M., Werner, J., Fedirko, V., Weiderpass, E., Dahm, C. C., … & Hughes, D. J. (2021). Association of pre-diagnostic antibody responses to Escherichia coli and Bacteroides fragilis toxin proteins with colorectal cancer in a European cohort. Gut Microbes, 13(1), 1903825.
Cheng, Y., Ling, Z. and Li, L., (2020). The intestinal microbiota and colorectal cancer. Frontiers in immunology, 11, p.615056.
Cuevas-Ramos, G., Petit, C. R., Marcq, I., Boury, M., Oswald, E., & Nougayrède, J. P. (2010). Escherichia coli induces DNA damage in vivo and triggers genomic instability in mammalian cells. Proceedings of the National Academy of Sciences, 107(25), 11537-11542.
Dougherty, M.W. and Jobin, C., (2021). Shining a light on colibactin biology. Toxins, 13(5), p.346.
Eklöf, V., Löfgren‐Burström, A., Zingmark, C., Edin, S., Larsson, P., Karling, P., Alexeyev, O., Rutegård, J., Wikberg, M.L. and Palmqvist, R., (2017). Cancer‐associated fecal microbial markers in colorectal cancer detection. International journal of cancer, 141(12), pp.2528-2536.
Fabian, N. J., Mannion, A. J., Feng, Y., Madden, C. M. and Fox, J. G. (2020). Intestinal colonization of genotoxic Escherichia coli strains encoding colibactin and cytotoxic necrotizing factor in small mammal pets. Veterinary micr obiology, 240, p.108506.
Fazeli, H. and Hasan Emami, S. M., (2021). Compare Characteristics of Mucosa-Associated adherent-invasive Escherichia coli isolated from Colorectal Cancer patients. Iranian Journal of Gastroenterology & Hepatology (GOVARESH), 26.
Fleckenstein, J. M. and Kuhlmann, F. M., (2019). Enterotoxigenic Escherichia coli infections. Current infectious disease reports, 21, pp.1-9.
Freshney, R. I. (2015). Culture of animal cells: a manual of basic technique and specialized applications. John Wiley & Sons.
Gaab, M. E., Lozano, P. O., Ibañez, D., Manese, K. D., Riego, F. M., Tiongco, R. E. and Albano, P. M. (2023). A meta-analysis on the association of colibactin-producing pks+ Escherichia coli with the development of colorectal cancer. (1), pp.75-82.
Gholizadeh, P., Mahallei, M., Pormohammad, A., Varshochi, M., Ganbarov, K., Zeinalzadeh, E., Yousefi, B., Bastami, M., Tanomand, A., Mahmood, S. S., Yousefi, M., Asgharzadeh, M., & Kafil, H. S. (2019). Microbial balance in the intestinal microbiota and its association with diabetes, obesity and allergic disease. Microbial pathogenesis, 127, 48–55.
Han, S., Gao, J., Zhou, Q., Liu, S., Wen, C. and Yang, X., (2018). Role of intestinal flora in colorectal cancer from the metabolite perspective: a systematic review. Cancer management and research, pp.199-206.
Harnack, C., Berger, H., Liu, L., Mollenkopf, H. J., Strowig, T. and Sigal, M., (2023). Short-term mucosal disruption enables colibactin-producing E. coli to cause long-term perturbation of colonic homeostasis. Gut Microbes, 15(1), p.2233689.
Hua, S., (2020). Advances in oral drug delivery for regional targeting in the gastrointestinal tract-influence of physiological, pathophysiological and pharmaceutical factors. Frontiers in pharmacology, 11, p.524.
Iyadorai, T., Mariappan, V., Vellasamy, K. M., Wanyiri, J. W., Roslani, A. C., Lee, G. K., Sears, C. and Vadivelu, J. (2020). Prevalence and association of pks+ Escherichia coli with colorectal cancer in patients at the University Malaya Medical Centre, Malaysia. PloS one, 15(1), p.e0228217.
Lihan, S., Lee, S. Y., Toh, S. C., & Leong, S. S. (2021). Plasmid-mediated antibiotic resistant Escherichia coli in Sarawak rivers and aquaculture farms, Northwest of Borneo. Antibiotics, 10(7), 776.
Ling, Z., Xiao, H. and Chen, W., (2022). Gut microbiome: The cornerstone of life and health. Advanced Gut & Microbiome Research, pp.1-3.
Magdy, A., Elhadidy, M., Abd Ellatif, M. E., El Nakeeb, A., Abdallah, E., Thabet, W., Youssef, M., Khafagy, W., Morshed, M. and Farid, M. (2015). Enteropathogenic Escherichia coli (EPEC): Does it have a role in colorectal tumourigenesis? A Prospective Cohort Study. International journal of surgery, 18, pp.169-173.
Mahmood, S. S., & Manaf, R. (2017). Effect of partially purified capsular polysaccharide of Escherichia coli on phagocytosis and IgG levels. Current Research in Microbiology and Biotechnology, 5(5), 1202-1205
Mahmood, S. S. (2022). The prevalence of blandm, blavim genes among enterobacter cloacae bacteria. Iraqi journal of agricultural sciences, 53(4), 958–964.
Mammedova, J. T., Karaseva, A. B., Burova, L. A., Sokolov, A. V., Perepletchikova, D. A., Malashicheva, A. B. and Starikova, E. A. (2023). Streptococcus pyogenes M49-16 Arginine Deiminase Disrupts Actin Cytoskeleton and Monolayer Confluence in a Culture of Endothelial Cells. Journal of Evolutionary Biochemistry and Physiology, 59(2), pp.446-457.
Mármol, I., Sánchez-de-Diego, C., Pradilla Dieste, A., Cerrada, E. and Rodriguez Yoldi, M. J. (2017). Colorectal carcinoma: a general overview and future perspectives in colorectal cancer. International journal of molecular sciences, 18(1), p.197.
McCoy, C. S., Mannion, A. J., Feng, Y., Madden, C. M., Artim, S. C., Au, G. G., Dolan, M., Haupt, J. L., Burns, M. A., Sheh, A. and Fox, J. G. (2021). Cytotoxic Escherichia coli strains encoding colibactin, cytotoxic necrotizing factor, and cytolethal distending toxin colonize laboratory common marmosets (Callithrix jacchus). Scientific Reports, 11(1), p.2309.
Molina, F., López-Acedo, E., Tabla, R., Roa, I., Gómez, A. and Rebollo, J. E. (2015). Improved detection of Escherichia coli and coliform bacteria by multiplex PCR. BMC biotechnology, 15(1), pp.1-9.
Nouri, R., Hasani, A., Masnadi Shirazi, K., Alivand, M. R., Sepehri, B., Sotoudeh, S., Hemmati, F., Fattahzadeh, A., Abdinia, B. and Ahangarzadeh Rezaee, M., (2021). Mucosa-associated Escherichia coli in colorectal cancer patients and control subjects: variations in the prevalence and attributing features. Canadian Journal of Infectious Diseases and Medical Microbiology.
Oliero, M., Calvé, A., Fragoso, G., Cuisiniere, T., Hajjar, R., Dobrindt, U. and Santos, M. M. (2021). Oligosaccharides increase the genotoxic effect of colibactin produced by pks+ Escherichia coli strains. Bmc Cancer, 21(1), pp.1-10.
Ongena, K., Das, C., Smith, J. L., Gil, S. and Johnston, G., (2010). Determining cell number during cell culture using the Scepter cell counter. JoVE (Journal of Visualized Experiments), (45), p.e2204.
Pleguezuelos-Manzano, C., Puschhof, J., Rosendahl Huber, A., van Hoeck, A., Wood, H. M., Nomburg, J., Gurjao, C., Manders, F., Dalmasso, G., Stege, P. B. and Paganelli, F. L. (2020). Mutational signature in colorectal cancer caused by genotoxic pks+ E. coli. Nature, 580(7802), pp.269-273.
Safi, I. N., Hussein, B. M. A. and Al-Shammari, A. M. (2019). In vitro periodontal ligament cell expansion by co-culture method and formation of multi-layered periodontal ligament-derived cell sheets. Regenerative therapy, 11, pp.225-239.
Shimpoh, T., Hirata, Y., Ihara, S., Suzuki, N., Kinoshita, H., Hayakawa, Y., Ota, Y., Narita, A., Yoshida, S., Yamada, A. and Koike, K., (2017). Prevalence of pks-positive Escherichia coli in Japanese patients with or without colorectal cancer. Gut pathogens, 9(1), pp.1-8.
Sun, J. and Kato, I., (2016). Gut microbiota, inflammation and colorectal cancer. Genes & diseases, 3(2), pp.130-143.
Traulsen, J., Zagami, C., Daddi, A. A. and Boccellato, F., (2021). Molecular modelling of the gastric barrier response, from infection to carcinogenesis. Best Practice & Research Clinical Gastroenterology, 50, p.101737.
Villariba-Tolentino, C., Cariño, A. M., Notarte, K. I., Macaranas, I., Fellizar, A., Tomas, R. C., Angeles, L. M., Abanilla, L., Lim, A., Aguilar, M. K. C. and Albano, P. M. (2021). pks+ Escherichia coli more prevalent in benign than malignant colorectal tumors. Molecular Biology Reports, 48, pp.5451-5458.
Yachida, S., Mizutani, S., Shiroma, H., Shiba, S., Nakajima, T., Sakamoto, T., Watanabe, H., Masuda, K., Nishimoto, Y., Kubo, M. and Hosoda, F., (2019). Metagenomic and metabolomic analyses reveal distinct stage-specific phenotypes of the gut microbiota in colorectal cancer. Nature medicine, 25(6), pp.968-976.
Zarei Ahmady, A., Aliyan Aliabadi, R., Amin, M., Ameri, A. and Abbasi Montazeri, E., (2023). Occurrence of diarrheagenic Escherichia coli pathotypes from raw milk and unpasteurized buttermilk by culture and multiplex polymerase chain reaction in southwest Iran. Molecular Biology Reports, 50(4), pp.3661-3667.
Zarei, O., Arabestan, M. R., Majlesi, A., Mohammadi, Y. and Alikhani, M. Y., (2019). Determination of virulence determinants of Escherichia coli strains isolated from patients with colorectal cancer compared to the healthy subjects. Gastroenterology and hepatology from bed to bench, 12(1), p.52.
How to cite this article
Hassan, R. A., Mahmood, S. S. and Askar, B. A. (2023). Prevalence and Association of pks+ Escherichia coli with Colorectal Cancer in Iraqi Patients. Science Archives, Vol. 4(3), 232-239. https://doi.org/10.47587/SA.2023.4309
License Article Metadata
This work is licensed under a Creative Commons Attribution 4.0 International License.