Zahra M Abed al-Kathem ✉ and Roaa J Elkheralla
Department of Biology, College of Science, University of Thi-Qar, Thi-Qar, 64001,Iraq
Received: May 26, 2023/ Revised: June 24, 2023/Accepted: June 25, 2023
(✉) Corresponding Author: Zahram@sci.utq.edu.iq.
Abstract
Microalgae have a lot of promise for making nutritious food and feed additives. These photosynthetic show promise for the long-term production of lipids due to their capacity to transform carbon into high-value chemicals and their ability to be grown on a vast scale without interfering with crop cultivation. Particularly, microalgae serve as a substitute source of unsaturated fatty acids (UFAs), whose consumption is linked to a number of advantages for both human and animal health. The generation of PUFAs in microalgae has been improved in recent years through the investigation of several methods. Two algae were isolated from the Gharaf river in Thi-Qar (Oedogonium, Lyngbya). The study was conducted on the effect of different concentrations of nitrogen and phosphorus for each of the unsaturated fatty acids of the two algae. Nitrogen concentrations were (5,10,20) and for phosphorus (1,5,10). These (UFAs) are affected when these nutrients are added to the culture medium, and as the concentration of these nutrients increases, we notice a decrease in the proportions of these unsaturated fatty acids (Octadecatrienoic acid, omega 6, Oleic acid omega 9, Eicosapentanoic acid omega 3, Docosatetraenoic acid omega 3) in Lyngbya and with absence OA, Docosatetraenoic acid and presence (vaccenic acid, omega 7) in Oedogonium.
Keywords: Unsaturated Fatty Acids, Microalgae Oedogonium, Lyngbya,Nitrogen, Phosphor.
References
Abedi, E., & Sahari, M. A. (2014). Long‐chain polyunsaturated fatty acid sources and evaluation of their nutritional and functional properties. Food science & nutrition, 2(5), 443-463.
Almeyda, M. D., Scodelaro Bilbao, P. G., Popovich, C. A., Constenla, D., & Leonardi, P. I. (2020). Enhancement of polyunsaturated fatty acid production under low-temperature stress in Cylindrotheca closterium. Journal of applied phycology, 32, 989-1001.
Boelen, P., Van Mastrigt, A., Van De Bovenkamp, H. H., Heeres, H. J., & Buma, A. G. (2017). Growth phase significantly decreases the DHA-to-EPA ratio in marine microalgae. Aquaculture International, 25, 577-587.
Breuer, G., Lamers, P. P., Martens, D. E., Draaisma, R. B., & Wijffels, R. H. (2012). The impact of nitrogen starvation on the dynamics of triacylglycerol accumulation in nine microalgae strains. Bioresource Technology, 124, 217-226.
Chauhan, V. S. (2022). Microalgae as a Renewable and Sustainable Source of High Value Metabolites. Microalgae for Sustainable Products: The Green Synthetic Biology Platform, 1.
Chew, K. W., Yap, J. Y., Show, P. L., Suan, N. H., Juan, J. C., Ling, T. C. & Chang, J. S. (2017). Microalgae biorefinery: high value products perspectives. Bioresource technology, 229, 53-62.
Chu, F. F., Chu, P. N., Cai, P. J., Li, W. W., Lam, P. K., & Zeng, R. J. (2013). Phosphorus plays an important role in enhancing biodiesel productivity of Chlorella vulgaris under nitrogen deficiency. Bioresource technology, 134, 341-346.
Fakhry, E. M., & El Maghraby, D. M. (2015). Lipid accumulation in response to nitrogen limitation and variation of temperature in Nannochloropsis salina. Botanical studies, 56(1), 1-8.
Ghasemi Fard, S., Wang, F., Sinclair, A. J., Elliott, G., & Turchini, G. M. (2019). How does high DHA fish oil affect health? A systematic review of evidence. Critical reviews in food science and nutrition, 59(11), 1684-1727.
Guedes, A. C., Meireles, L. A., Amaro, H. M., & Malcata, F. X. (2010). Changes in lipid class and fatty acid composition of cultures of Pavlova lutheri, in response to light intensity. Journal of the American Oil Chemists’ Society, 87(7), 791-801.
Hassan, F. M., Aljbory, I. F., & Kassim, T. I. (2013). An attempt to stimulate lipids for biodiesel production from locally isolated microalgae in Iraq. Baghdad Science Journal, 10(1), 97-108.
Hu, Q., Sommerfeld, M., Jarvis, E., Ghirardi, M., Posewitz, M., Seibert, M., & Darzins, A. (2008). Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. The plant journal, 54(4), 621-639.
Kapoor, B., Kapoor, D., Gautam, S., Singh, R., & Bhardwaj, S. (2021). Dietary polyunsaturated fatty acids (PUFAs): Uses and potential health benefits. Current Nutrition Reports, 10, 232-242.
Khozin-Goldberg, I., Iskandarov, U., & Cohen, Z. (2011). LC-PUFA from photosynthetic microalgae: occurrence, biosynthesis, and prospects in biotechnology. Applied microbiology and biotechnology, 91, 905-915.
Krishnan, A., Anandan, R., & Joseph, A. (2020). Culture Medium and Growth Phase Modulate the Fatty Acid Composition of the Diatom Nitzschia palea (Kutzing) W. Smith-Potential Source for Live Feed and Biodiesel.
Li, T., Xu, J., Wu, H., Jiang, P., Chen, Z., & Xiang, W. (2019). Growth and biochemical composition of Porphyridium purpureum SCS-02 under different nitrogen concentrations. Marine drugs, 17(2), 124.
Makrides, M., Neumann, M., Simmer, K., Gibson, R., & Pater, J. (1995). Are long-chain polyunsaturated fatty acids essential nutrients in infancy?. The Lancet, 345(8963), 1463-1468.
Mason, R. P., Libby, P., & Bhatt, D. L. (2020). Emerging mechanisms of cardiovascular protection for the omega-3 fatty acid eicosapentaenoic acid. Arteriosclerosis, thrombosis, and vascular biology, 40(5), 1135-1147.
Pal, D., Khozin-Goldberg, I., Cohen, Z., & Boussiba, S. (2011). The effect of light, salinity, and nitrogen availability on lipid production by Nannochloropsis sp. Applied microbiology and biotechnology, 90, 1429-1441.
Park, H., Jung, D., Lee, J., Kim, P., Cho, Y., Jung, I., … & Lee, C. G. (2018). Improvement of biomass and fatty acid productivity in ocean cultivation of Tetraselmis sp. using hypersaline medium. Journal of applied phycology, 30, 2725-2735.
Rai, M. P., Gautom, T., & Sharma, N. (2015). Effect of salinity, pH, light intensity on growth and lipid production of microalgae for bioenergy application. OnLine Journal of Biological Sciences, 15(4), 260.
Ratomski, P., & Hawrot-Paw, M. (2021). Influence of nutrient-stress conditions on Chlorella vulgaris biomass production and lipid content. Catalysts, 11(5), 573.
Saini, R. K., Prasad, P., Sreedhar, R. V., Akhilender Naidu, K., Shang, X., & Keum, Y. S. (2021). Omega− 3 polyunsaturated fatty acids (PUFAs): Emerging plant and microbial sources, oxidative stability, bioavailability, and health benefits—A review. Antioxidants, 10(10), 1627.
Schreiber, C., Behrendt, D., Huber, G., Pfaff, C., Widzgowski, J., Ackermann, B. & Nedbal, L. (2017). Growth of algal biomass in laboratory and in large-scale algal photobioreactors in the temperate climate of western Germany. Bioresource technology, 234, 140-149.
Sepulveda, C., Gómez, C., Bahraoui, N. E., & Acién, G. (2019). Comparative evaluation of microalgae strains for CO2 capture purposes. Journal of CO2 Utilization, 30, 158-167.
Simopoulos, A. P. (2016). An increase in the omega-6/omega-3 fatty acid ratio increases the risk for obesity. Nutrients, 8(3), 128.
Su, C. H., Chien, L. J., Gomes, J., Lin, Y. S., Yu, Y. K., Liou, J. S., & Syu, R. J. (2011). Factors affecting lipid accumulation by Nannochloropsis oculata in a two-stage cultivation process. Journal of Applied Phycology, 23, 903-908.
Su, G., Jiao, K., Li, Z., Guo, X., Chang, J., Ndikubwimana, T., … & Lin, L. (2016). Phosphate limitation promotes unsaturated fatty acids and arachidonic acid biosynthesis by microalgae Porphyridium purpureum. Bioprocess and biosystems engineering, 39, 1129-1136.
Sulochana, S. B., & Arumugam, M. (2020). Targeted metabolomic and biochemical changes during nitrogen stress mediated lipid accumulation in Scenedesmus quadricauda CASA CC202. Frontiers in Bioengineering and Biotechnology, 8, 585632.
Van Den Hende, S., Vervaeren, H., & Boon, N. (2012). Flue gas compounds and microalgae:(Bio-) chemical interactions leading to biotechnological opportunities. Biotechnology advances, 30(6), 1405-1424.
Wang, X., Fosse, H. K., Li, K., Chauton, M. S., Vadstein, O., & Reitan, K. I. (2019). Influence of nitrogen limitation on lipid accumulation and EPA and DHA content in four marine microalgae for possible use in aquafeed. Frontiers in Marine Science, 6, 95.
Xin, L., Hong-Ying, H., Ke, G., & Ying-Xue, S. (2010). Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp. Bioresource technology, 101(14), 5494-5500.
Yates, C. M., Calder, P. C., & Rainger, G. E. (2014). Pharmacology and therapeutics of omega-3 polyunsaturated fatty acids in chronic inflammatory disease. Pharmacology & therapeutics, 141(3), 272-282.
How to cite this article
Al-Kathem, Z. M. A. and Elkheralla, R. J. (2023). Production of unsaturated fatty acids (omega 3,6,7,9) from algae Lyngbya and Oedogonium under the influence of nitrogen and phosphorus. Science Archives, Vol. 4(2),178-184. https://doi.org/10.47587/SA.2023.4216
License Article Metadata
This work is licensed under a Creative Commons Attribution 4.0 International License.