Abeer Salih Ali¹, Mahmood Abed Hamzah², Saif Mazeel Abed³ Alia Essam Mahmood Alubadi¹

¹Department of Biology, College of Science, Mustansiriyah University, Baghdad, Iraq

²Ministry of Education, Baghdad, Iraq

³College of Health and Medical Techniques, Sawa University, Iraq

Received: Oct 1, 2023/ Revised: Oct 25, 2023/Accepted: Oct 27, 2023

(✉) Corresponding Author: Abeer Salih Ali

Abstract

Trained immunity is a new concept of innate immune memory which gives enduring protection through developing adaptive features against foreign reinfection, through many studies, when any pathogen invades the human body a series of metabolic alterations occur and lead to epigenetic reprogramming of various transcriptional innate immune pathways due to different types of endogenous and exogenous antigens which have similar epitopes that trigger cross-protective immunity which is represented by the heightened trained innate immune response to various reinfections due to cross-reactivity of these similar epitopes of various antigens by trained innate immune cells specially (monocytes and macrophages), this concept has been used previously unintentionally and currently can be used as potential therapeutic strategies for immunological management of various diseases such as cancer, coronavirus disease 2019 (COVID-19) and other diseases by use different vaccines due to non-specific effects of vaccines, such as BCG vaccine effects on different diseases.

Keywords: Trained Immunity, Epigenetics, Cross-Protection, Immunotherapy, Non-Specific Vaccines.

References

Alito, A., McNair, J., Girvin, R., Zumarraga, M., Bigi, F., Pollock, J., & Cataldi, A. (2003, November). Identification of Mycobacterium bovis antigens by analysis of bovine T-cell responses after infection with a virulent strain. Brazilian Journal of Medical and Biological Research, 36(11), 1523–1531.

https://doi.org/10.1590/s0100-879×2003001100011

Amarante-Mendes, G. P., Adjemian, S., Branco, L. M., Zanetti, L. C., Weinlich, R., & Bortoluci, K. R. (2018, October 16). Pattern Recognition Receptors and the Host Cell Death Molecular Machinery. Frontiers in Immunology, 9.

https://doi.org/10.3389/fimmu.2018.02379

Benedictus, L., Steinbach, S., Holder, T., Bakker, D., Vrettou, C., Morrison, W. I., Vordermeier, M., & Connelley, T. (2020, November 12). Hydrophobic Mycobacterial Antigens Elicit Polyfunctional T Cells in Mycobacterium bovis Immunized Cattle: Association With Protection Against Challenge? Frontiers in Immunology, 11.

https://doi.org/10.3389/fimmu.2020.588180

Boraschi, D., & Italiani, P. (2018, April 19). Innate Immune Memory: Time for Adopting a Correct Terminology. Frontiers in Immunology, 9.

https://doi.org/10.3389/fimmu.2018.00799

Cavalli, G., Tengesdal, I. W., Gresnigt, M., Nemkov, T., Arts, R. J., Domínguez-Andrés, J., Molteni, R., Stefanoni, D., Cantoni, E., Cassina, L., Giugliano, S., Schraa, K., Mills, T. S., Pietras, E. M., Eisenmensser, E. Z., Dagna, L., Boletta, A., D’Alessandro, A., Joosten, L. A., . . . Dinarello, C. A. (2021, April). The anti-inflammatory cytokine interleukin-37 is an inhibitor of trained immunity. Cell Reports, 35(1), 108955.

https://doi.org/10.1016/j.celrep.2021.108955

Chandler, C. E., & Ernst, R. K. (2017, August 7). Bacterial lipids: powerful modifiers of the innate immune response. F1000Research, 6, 1334.

https://doi.org/10.12688/f1000research.11388.1

Covián, C., Fernández-Fierro, A., Retamal-Díaz, A., Díaz, F. E., Vasquez, A. E., Lay, M. K., Riedel, C. A., González, P. A., Bueno, S. M., &Kalergis, A. M. (2019). BCG-Induced Cross-Protection and Development of Trained Immunity: Implication for Vaccine Design. Frontiers in immunology, 10, 2806.

https://doi.org/10.3389/fimmu.2019.02806

Daha, M. R. (2011). Grand Challenges in Molecular Innate Immunity. Frontiers in Immunology, 2.

https://doi.org/10.3389/fimmu.2011.00016

Divangahi, M., Aaby, P., Khader, S. A., Barreiro, L. B., Bekkering, S., Chavakis, T., van Crevel, R., Curtis, N., DiNardo, A. R., Dominguez-Andres, J., Duivenvoorden, R., Fanucchi, S., Fayad, Z., Fuchs, E., Hamon, M., Jeffrey, K. L., Khan, N., Joosten, L. A. B., Kaufmann, E., Netea, M. G. (2021, May 20). Author Correction: Trained immunity, tolerance, priming and differentiation: distinct immunological processes. Nature Immunology, 22(7), 928–928.

https://doi.org/10.1038/s41590-021-00960-y

Heitmueller, M., Billion, A., Dobrindt, U., Vilcinskas, A., & Mukherjee, K. (2017, October). Epigenetic Mechanisms Regulate Innate Immunity against Uropathogenic and Commensal-Like Escherichia coli in the Surrogate Insect Model Galleria mellonella. Infection and Immunity, 85(10).

https://doi.org/10.1128/iai.00336-17

Kar, U. K., & Joosten, L. A. B. (2020, January 10). Training the trainable cells of the immune system and beyond. Nature Immunology, 21(2), 115–119.

https://doi.org/10.1038/s41590-019-0583-y

Kim, H. S., Hong, J. T., Kim, Y., & Han, S. B. (2011). Stimulatory Effect of β-glucans on Immune Cells. Immune Network, 11(4), 191. \

https://doi.org/10.4110/in.2011.11.4.191

Koneru, G., Batiha, G. E. S., Algammal, A. M., Mabrok, M., Magdy, S., Sayed, S., AbuElmagd, M. E., Elnemr, R., Saad, M. M., Abd Ellah, N. H., Hosni, A., Muhammad, K., & Hetta, H. F. (2021, March). BCG Vaccine-Induced Trained Immunity and COVID-19: Protective or Bystander? Infection and Drug Resistance, Volume 14, 1169–1184.

https://doi.org/10.2147/idr.s300162

Kubota, M., Iizasa, E., Chuuma, Y., Kiyohara, H., Hara, H., & Yoshida, H. (2020, May). Adjuvant activity of Mycobacteria-derived mycolic acids. Heliyon, 6(5), e04064.

https://doi.org/10.1016/j.heliyon.2020.e04064

Marakalala, M. J., Williams, D. L., Hoving, J. C., Engstad, R., Netea, M. G., & Brown, G. D. (2013, June). Dectin-1 plays a redundant role in the immunomodulatory activities of β-glucan-rich ligands in vivo. Microbes and Infection, 15(6–7), 511–515.

https://doi.org/10.1016/j.micinf.2013.03.002

Meikle, V., Alito, A., Llera, A. S., Gioffré, A., Peralta, A., Buddle, B. M., & Cataldi, A. (2009, September). Identification of Novel Mycobacterium bovis Antigens by Dissection of Crude Protein Fractions. Clinical and Vaccine Immunology, 16(9), 1352–1359. \

https://doi.org/10.1128/cvi.00211-09

Murphy, D. M., Mills, K. H. G., & Basdeo, S. A. (2021, August 19). The Effects of Trained Innate Immunity on T Cell Responses; Clinical Implications and Knowledge Gaps for Future Research. Frontiers in Immunology, 12.

https://doi.org/10.3389/fimmu.2021.706583

Netea, M. G., Domínguez-Andrés, J., Barreiro, L. B., Chavakis, T., Divangahi, M., Fuchs, E., Joosten, L. A. B., van der Meer, J. W. M., Mhlanga, M. M., Mulder, W. J. M., Riksen, N. P., Schlitzer, A., Schultze, J. L., Stabell Benn, C., Sun, J. C., Xavier, R. J., & Latz, E. (2020, March 4). Defining trained immunity and its role in health and disease. Nature Reviews Immunology, 20(6), 375–388.

https://doi.org/10.1038/s41577-020-0285-6

Netea, M. G., Joosten, L. A. B., Latz, E., Mills, K. H. G., Natoli, G., Stunnenberg, H. G., O’Neill, L. A. J., & Xavier, R. J. (2016, April 22). Trained immunity: A program of innate immune memory in health and disease. Science, 352(6284).

https://doi.org/10.1126/science.aaf1098

Peng, H., & Tian, Z. (2017, September 13). Natural Killer Cell Memory: Progress and Implications. Frontiers in Immunology, 8.

https://doi.org/10.3389/fimmu.2017.01143

Riksen, N. P., & Netea, M. G. (2021, February). Immunometabolic control of trained immunity. Molecular Aspects of Medicine, 77, 100897.

https://doi.org/10.1016/j.mam.2020.100897

Sánchez-Ramón, S., Conejero, L., Netea, M. G., Sancho, D., Palomares, S., & Subiza, J. L. (2018, December 17). Trained Immunity-Based Vaccines: A New Paradigm for the Development of Broad-Spectrum Anti-infectious Formulations. Frontiers in Immunology, 9.

https://doi.org/10.3389/fimmu.2018.02936

Tanner, R., Villarreal-Ramos, B., Vordermeier, H. M., & McShane, H. (2019, June 11). The Humoral Immune Response to BCG Vaccination. Frontiers in Immunology, 10.

https://doi.org/10.3389/fimmu.2019.01317

van der Meer, J. W., Barza, M., Wolff, S. M., & Dinarello, C. A. (1988, March). A low dose of recombinant interleukin 1 protects granulocytopenic mice from lethal gram-negative infection. Proceedings of the National Academy of Sciences, 85(5), 1620–1623.

https://doi.org/10.1073/pnas.85.5.1620

van der Valk, F. M., Bekkering, S., Kroon, J., Yeang, C., Van den Bossche, J., van Buul, J. D., Ravandi, A., Nederveen, A. J., Verberne, H. J., Scipione, C., Nieuwdorp, M., Joosten, L. A., Netea, M. G., Koschinsky, M. L., Witztum, J. L., Tsimikas, S., Riksen, N. P., & Stroes, E. S. (2016, August 23). Oxidized Phospholipids on Lipoprotein(a) Elicit Arterial Wall Inflammation and an Inflammatory Monocyte Response in Humans. Circulation, 134(8), 611–624.

https://doi.org/10.1161/circulationaha.116.020838

Xu, D., & Lu, W. (2020, May 7). Defensins: A Double-Edged Sword in Host Immunity. Frontiers in Immunology, 11.

https://doi.org/10.3389/fimmu.2020.00764

How to cite this article

Ali, A. S., Hamzah, M. A., Abed, S. M. and Alubadi, A. M. (2023). The effect of cross-reactivity on trained innate immunity. Science Archives, Vol. 4(4), 291-294.

https://doi.org/10.47587/SA.2023.4408

Licence                  Article Metadata

This work is licensed under a Creative Commons Attribution 4.0 International License.

 

View Details