Gunjan Garg , Sharmistha Bhati and Sanjay Kataria
1,2-School of Biotechnology, Gautam Buddha University, Greater Noida (U.P) India
3-Department of Botany, BSA College, Dr. B.R.A University, Agra (U.P), India
Article History: Received: Nov 11, 2020 / Revised: Dec 25, 2020/ Accepted: Dec 26, 2020
Abstract
COVID-19 also named as extreme coronavirus acute respiratory syndrome 2 (SARS-CoV-2), is a new strain of coronavirus that affects humans and was formally identified in 2019, after its recent discovery in Severe pneumonia patients in Wuhan (China). Globally, there is an unprecedented rise in COVID-19 positive cases. India has long surpassed many countries and is now the worst-affected country. Despite the best efforts of scientists around the world, no cure or vaccine has yet been developed. With this in mind, the government is trying to come up with a solution to treat patients affected by this deadly pandemic. It is possible to foresee various options to monitor or avoid emerging 2019-nCoV infections, including vaccines, interferon therapies, and small-molecule drugs. New interventions, however, are likely to take months to years to grow. Furthermore, the majority of current antiviral therapies also contribute to the production of viral resistance. To classify lead, the pharmaceutical industry is increasingly targeting phytochemical extracts, medicinal plants, and aromatic herbs. Here, we take a look at what is known about the use of herbal ingredients in the treatment of COVID-19 disease.
Keywords Coronavirus, COVID-19, Phytochemicals, Wild Plants, Herbs
How to cite this article
Garg, G., Bhati, S. and Kataria, S. (2020). The role of wild plants and herbs in restoring holistic health and fighting the infections borne by the epidemic Covid-19. Science Archives, 1 (3), 177-185. http://dx.doi.org/10.47587/SA.2020.1317
Crossref DOI
http://dx.doi.org/10.47587/SA.2020.1317
Copyright
This is an open-access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
References
Aboubakr, H. A., Nauertz, A., Luong, N. T., Agrawal, S., El-Sohaimy, S. A., Youssef, M. M., & Goyal, S. M. (2016). In vitro antiviral activity of clove and ginger aqueous extracts against feline calicivirus, a surrogate for human norovirus. Journal of food protection, 79(6), 1001-1012.
Ammon, H. P. T. (2010). Modulation of the immune system by Boswellia serrata extracts and boswellic acids. Phytomedicine, 17(11), 862-867.
Asres, K., Bucar, F., Kartnig, T., Witvrouw, M., Pannecouque, C., & De Clercq, E. (2001). Antiviral activity against human immunodeficiency virus type 1 (HIV‐1) and type 2 (HIV‐2) of ethnobotanically selected Ethiopian medicinal plants. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, 15(1), 62-69.
Badgujar, S. B., Patel, V. V., & Bandivdekar, A. H. (2014). Foeniculum vulgare Mill: a review of its botany, phytochemistry, pharmacology, contemporary application, and toxicology. BioMed research international, 2014.
Battistini, R., Rossini, I., Ercolini, C., Goria, M., Callipo, M. R., Maurella, C., … & Serracca, L. (2019). antiviral activity of essential oils against hepatitis A virus in soft fruits. Food and environmental virology, 11(1), 90-95.
Boukhatem, M. N. (2020). Novel Coronavirus Disease 2019 (COVID-19) Outbreak in Algeria: A New Challenge for Prevention. J Community Med Health Care, 5(1), 1035.
Calixto, J. B., Santos, A. R., Filho, V. C., & Yunes, R. A. (1998). A review of the plants of the genus Phyllanthus: their chemistry, pharmacology, and therapeutic potential. Medicinal research reviews, 18(4), 225-258.
Chang, F. R., Yen, C. T., Ei-Shazly, M., Lin, W. H., Yen, M. H., Lin, K. H., & Wu, Y. C. (2012). Anti-human coronavirus (anti-HCoV) triterpenoids from the leaves of Euphorbia neriifolia. Natural product communications, 7(11), 1934578X1200701103.
Chang, J.S., Wang, K.C., Yeh, C.F.(2013). Fresh ginger (Zingiber officinale) has anti-viral activity against human respiratory syncytial virus in human respiratory tract cell lines. J Ethnopharmacol, 145(1), 146-51.
Checker R, Sandur SK, Sharma D, Patwardhan RS, Jayakumar S, Kohli V, et al. (2012) Potent Anti-Inflammatory Activity of Ursolic Acid, a Triterpenoid Antioxidant, Is Mediated through Suppression of NF-κB, AP-1 and NF-AT. PLoS ONE 7(2): e31318. https://doi.org/10.1371/journal.pone.0031318
Chen, F., Chan, K. H., Jiang, Y., Kao, R. Y. T., Lu, H. T., Fan, K. W., … & Guan, Y. (2004). In vitro susceptibility of 10 clinical isolates of SARS coronavirus to selected antiviral compounds. Journal of Clinical Virology, 31(1), 69-75.
Chen, Z., & Nakamura, T. (2004). Statistical evidence for the usefulness of Chinese medicine in the treatment of SARS. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, 18(7), 592-594.
Cheng, P. W., Ng, L. T., Chiang, L. C., & Lin, C. C. (2006). Antiviral effects of saikosaponins on human coronavirus 229E in vitro. Clinical and Experimental Pharmacology and Physiology, 33(7), 612-616.
Chiang, L. C., Ng, L. T., Cheng, P. W., Chiang, W., & Lin, C. C. (2005). Antiviral activities of extracts and selected pure constituents of Ocimum basilicum. Clinical and Experimental Pharmacology and Physiology, 32(10), 811-816.
Cinatl, J., Morgenstern, B., Bauer, G., Chandra, P., Rabenau, H., & Doerr, H. W. (2003). Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus. The Lancet, 361(9374), 2045-2046.
Collins, P. J., Haire, L. F., Lin, Y. P., Liu, J., Russell, R. J., Walker, P. A., … & Gamblin, S. J. (2008). Crystal structures of oseltamivir-resistant influenza virus neuraminidase mutants. Nature, 453(7199), 1258-1261.
COVID-19 Coronavirus Pandemic: Confirmed Cases and Deaths by Country,
Territory, or Conveyance. Available from: https://www.worldometers.info/coronavirus …
Dalton, C. B., Corbett, S. J., & Katelaris, A. L. (2020). Pre-emptive low cost social distancing and enhanced hygiene implemented before local COVID-19 transmission could decrease the number and severity of cases. The Medical Journal of Australia, 212(10), 1.
De Oliveira, J. R., Camargo, S. E. A., & De Oliveira, L. D. (2019). Rosmarinus officinalis L.(rosemary) as therapeutic and prophylactic agent. Journal of biomedical science, 26(1), 5.
Delaney, W.E., IV, Borroto-Esoda, K. (2008). Therapy of chronic hepatitis B: Trends and developments. Curr. Opinion. Pharmacol, 8, 532–540.
Fenwick, G. R., & Hanley, A. B. (1985). Allium species poisoning. Veterinary Record, 116(1), 28-28.
Geller, C., Varbanov, M., & Duval, R. E. (2012). Human coronaviruses: insights into environmental resistance and its influence on the development of new antiseptic strategies. Viruses, 4(11), 3044-3068.
Gerbeth, K., Hüsch, J., Fricker, G., Werz, O., Schubert-Zsilavecz, M., & Abdel-Tawab, M. (2013). In vitro metabolism, permeation, and brain availability of six major boswellic acids from Boswellia serrata gum resins. Fitoterapia, 84, 99-106.
Geuenich, S., Goffinet, C., Venzke, S., Nolkemper, S., Baumann, I., Plinkert, P., … & Keppler, O. T. (2008). Aqueous extracts from peppermint, sage and lemon balm leaves display potent anti-HIV-1 activity by increasing the virion density. Retrovirology, 5(1), 27.
Ghorbani, A., & Esmaeilizadeh, M. (2017). Pharmacological properties of Salvia officinalis and its components. Journal of Traditional and Complementary Medicine, 7(4), 433-440.
Gilling, D. H., Kitajima, M., Torrey, J. R., & Bright, K. R. (2014). Antiviral efficacy and mechanisms of action of oregano essential oil and its primary component carvacrol against murine norovirus. Journal of applied microbiology, 116(5), 1149-1163.
Guan, W. J., Ni, Z. Y., Hu, Y., Liang, W. H., Ou, C. Q., He, J. X., … & Du, B. (2020). Clinical characteristics of coronavirus disease 2019 in China. New England journal of medicine, 382(18), 1708-1720.
Hoever, G., Baltina, L., Michaelis, M., Kondratenko, R., Baltina, L., Tolstikov, G. A., … & Cinatl, J. (2005). Antiviral Activity of Glycyrrhizic Acid Derivatives against SARS− Coronavirus. Journal of medicinal chemistry, 48(4), 1256-1259.
Hudson, J. B. (1990). Antiviral Compounds from Plants. Boca Raton. Ann Arbor, Boston.
Hudson, J. B. (2012). Applications of the phytomedicine Echinacea purpurea (Purple Coneflower) in infectious diseases. Journal of Biomedicine and Biotechnology, 2012.
Jagetia, G. C., & Aggarwal, B. B. (2007). “Spicing up” of the immune system by curcumin. Journal of clinical immunology, 27(1), 19-35.
Jang, S. M., Yee, S. T., Choi, J., Choi, M. S., Do, G. M., Jeon, S. M., … & Lee, M. K. (2009). Ursolic acid enhances the cellular immune system and pancreatic β-cell function in streptozotocin-induced diabetic mice fed a high-fat diet. International immunopharmacology, 9(1), 113-119.
Khan, H. M., Raza, S. M., Anjum, A. A., Ali, M. A., & Akbar, H. (2019). Antiviral, embryo toxic and cytotoxic activities of Astragalus membranaceus root extracts. Pakistan journal of pharmaceutical sciences, 32(1).
Khwaza, V., Oyedeji, O. O., & Aderibigbe, B. A. (2018). Antiviral activities of oleanolic acid and its analogues. Molecules, 23(9), 2300.
Kim, D. E., Min, J. S., Jang, M. S., Lee, J. Y., Shin, Y. S., Park, C. M., … & Kwon, S. (2019). Natural bis-benzylisoquinoline alkaloids-tetrandrine, fangchinoline, and cepharanthine, inhibit human coronavirus OC43 infection of MRC-5 human lung cells. Biomolecules, 9(11), 696.
Kim, H. Y., Eo, E. Y., Park, H., Kim, Y. C., Park, S., Shin, H. J., & Kim, K. (2010). Medicinal herbal extracts of Sophorae radix, Acanthopanacis cortex, Sanguisorbae radix and Torilis fructus inhibit coronavirus replication in vitro. Antivir Ther, 15(5), 697-709.
Kinoshita, E., Hayashi, K., Katayama, H., Hayashi, T., & Obata, A. (2012). Anti-influenza virus effects of elderberry juice and its fractions. Bioscience, biotechnology, and biochemistry, 120112.
Kubala, J. Impressive Herbs with Antiviral Activity. Nutrition, October 21, 2019. Retrieved from (on January 2, 2020) https://www.healthline.com/nutrition/antiviral-herbs .
Li, B. Q., Fu, T., Dongyan, Y., Mikovits, J. A., Ruscetti, F. W., & Wang, J. M. (2000). Flavonoid baicalin inhibits HIV-1 infection at the level of viral entry. Biochemical and biophysical research communications, 276(2), 534-538.
Li, S. Y., Chen, C., Zhang, H. Q., Guo, H. Y., Wang, H., Wang, L., … & Li, R. S. (2005). Identification of natural compounds with antiviral activities against SARS-associated coronavirus. Antiviral research, 67(1), 18-23.
Li, Y., Liu, Y., Ma, A., Bao, Y., Wang, M., & Sun, Z. (2017). In vitro antiviral, anti-inflammatory, and antioxidant activities of the ethanol extract of Mentha piperita L. Food science and biotechnology, 26(6), 1675-1683.
Lin, C. W., Tsai, F. J., Tsai, C. H., Lai, C. C., Wan, L., Ho, T. Y., … & Chao, P. D. L. (2005). Anti-SARS coronavirus 3C-like protease effects of Isatis indigotica root and plant-derived phenolic compounds. Antiviral research, 68(1), 36-42.
Lipke, M. M. (2006). An armamentarium of wart treatments. Clinical medicine & research, 4(4), 273-293.
McCutcheon, A. R., Roberts, T. E., Gibbons, E., Ellis, S. M., Babiuk, L. A., Hancock, R. E. W., & Towers, G. H. N. (1995). Antiviral screening of British Columbian medicinal plants. Journal of Ethnopharmacology, 49(2), 101-110.
McKay, D. L., & Blumberg, J. B. (2006). A review of the bioactivity and potential health benefits of peppermint tea (Mentha piperita L.). Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, 20(8), 619-633.
McMahon, M. A., Siliciano, J. D., Lai, J., Liu, J. O., Stivers, J. T., Siliciano, R. F., & Kohli, R. M. (2008). The antiherpetic drug acyclovir inhibits HIV replication and selects the V75I reverse transcriptase multidrug resistance mutation. Journal of Biological Chemistry, 283(46), 31289-31293.
Harris, J. C., Cottrell, S. L., Plummer, S., & Lloyd, D. (2001). Antimicrobial properties of Allium sativum (garlic). Applied microbiology and biotechnology, 57(3),147-150.
Guo, N. L., Lu, D. P., Woods, G. L., Reed, E., Zhou, G. Z., Zhang, L. B., & Waldman, R. H. (1993). Demonstration of the anti-viral activity of garlic extract against human cytomegalovirus in vitro. Chinese medical journal, 106(2), 93-96.
Orhan, İ. E., ÖZÇELİK, B., Kartal, M., & Kan, Y. (2012). Antimicrobial and antiviral effects of essential oils from selected Umbelliferae and Labiatae plants and individual essential oil components. Turkish Journal of Biology, 36(3), 239-246.
Peterson, C. T., Vaughn, A. R., Sharma, V., Chopra, D., Mills, P. J., Peterson, S. N., & Sivamani, R. K. (2018). Effects of turmeric and curcumin dietary supplementation on human gut microbiota: A double-blind, randomized, placebo-controlled pilot study.
Pilau, M. R., Alves, S. H., Weiblen, R., Arenhart, S., Cueto, A. P., & Lovato, L. T. (2011). Antiviral activity of the Lippia graveolens (Mexican oregano) essential oil and its main compound carvacrol against human and animal viruses. Brazilian Journal of Microbiology, 42(4), 1616-1624.
Pourghanbari, G., Nili, H., Moattari, A., Mohammadi, A., & Iraji, A. (2016). Antiviral activity of the oseltamivir and Melissa officinalis L. essential oil against avian influenza A virus (H9N2). VirusDisease, 27(2), 170-178.
Ahmed, I., Aslam, A., Mustafa, G., Masood, S., Ali, M. A., & Nawaz, M. (2017). Anti-avian influenza virus H9N2 activity of aqueous extracts of Zingiber officinalis (Ginger) and Allium sativum (Garlic) in chick embryos. Pak. J. Pharm. Sci, 30(4), 1341-1344.
Sanchez-Lamar, A., Fiore, M., Cundari, E., Ricordy, R., Cozzi, R., & De Salvia, R. (1999). Phyllanthus orbicularis aqueous extract: cytotoxic, genotoxic, and antimutagenic effects in the CHO cell line. Toxicology and applied pharmacology, 161(3), 231-239.
Santoyo, S., Jaime, L., García-Risco, M. R., Ruiz-Rodríguez, A., & Reglero, G. (2014). Antiviral properties of supercritical CO2 extracts from oregano and sage. International journal of food properties, 17(5), 1150-1161.
Schnitzler, P., Koch, C., & Reichling, J. (2007). Susceptibility of drug-resistant clinical herpes simplex virus type 1 strains to essential oils of ginger, thyme, hyssop, and sandalwood. Antimicrobial agents and chemotherapy, 51(5), 1859-1862.
Schnitzler, P., Schuhmacher, A., Astani, A., & Reichling, J. (2008). Melissa officinalis oil affects infectivity of enveloped herpesviruses. Phytomedicine, 15(9), 734-740.
Shoji, S., Furuishi, K., Yanase, R., Miyazaka, T., & Kino, M. (1993). Allyl compounds selectively killed human immunodeficiency virus (type 1)-infected cells. Biochemical and biophysical research communications, 194(2), 610-621.
Thyagarajan, S. P., Jayaram, S., Valliammai, T., Madanagopalan, N., Pal, V. G., & Jayaraman, K. (1990). Phyllanthus amarus and hepatitis B. The Lancet, 336(8720), 949-950.
Thyagarajan, S. P., Thirunalasundari, T., Subramanian, S., Venkateswaran, P. S., & Blumberg, B. S. (1988). Effect of Phyllanthus amarus on chronic carriers of hepatitis B virus. The Lancet, 332(8614), 764-766.
Tsai, Y., Cole, L. L., Davis, L. E., Lockwood, S. J., Simmons, V., & Wild, G. C. (1985). Antiviral properties of garlic: in vitro effects on influenza B, herpes simplex and coxsackie viruses. Planta medica, 51(05), 460-461.
Tsai, Y. C., Lee, C. L., Yen, H. R., Chang, Y. S., Lin, Y. P., Huang, S. H., & Lin, C. W. (2020). Antiviral action of Tryptanthrin isolated from Strobilanthes cusia leaf against human coronavirus NL63. Biomolecules, 10(3), 366.
Van Der Hoek, L. (2007). Human coronaviruses: what do they cause?. Antiviral therapy, 12(4 B).
Venkateswaran, P. S., Millman, I., & Blumberg, B. S. (1987). Effects of an extract from Phyllanthus niruri on hepatitis B and woodchuck hepatitis viruses: in vitro and in vivo studies. Proceedings of the National Academy of Sciences, 84(1), 274-278.
Weber, N. D., Andersen, D. O., North, J. A., Murray, B. K., Lawson, L. D., & Hughes, B. G. (1992). In vitro virucidal effects of Allium sativum (garlic) extract and compounds. Planta medica, 58(05), 417-423.
Wu, C. Y., Jan, J. T., Ma, S. H., Kuo, C. J., Juan, H. F., Cheng, Y. S. E., … & Liang, F. S. (2004). Small molecules targeting severe acute respiratory syndrome human coronavirus. Proceedings of the National Academy of Sciences, 101(27), 10012-10017.
Zheng, Y. Y., Ma, Y. T., Zhang, J. Y., & Xie, X. (2020). COVID-19 and the cardiovascular system. Nature Reviews Cardiology, 17(5), 259-260.
License Article Metadata
This work is licensed under a Creative Commons Attribution 4.0 International License