Ahmed A. J. Mahmood

 Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq                                 ahmedsot@gmail.com

Received: Dec 4, 2021 / Revised: Jan 15, 2022/ Accepted: Jan 20, 2022

Abstract

Cancer is a heterogeneous disease which categories as the second-leading cause of death worldwide. It is fatal to 42% of diagnosed patients every year. The ideal anticancer agents needed to be powerful, well-tolerated in patients, with low side effects and high selectivity. Antibiotics on the other hand are efficient, well-tolerated, with a very low level of toxicity. Therefore, they continue to be the most important goal for new drugs invention. 2-Azetidinones (β-lactams) are most marketing drugs than any other antibiotics. The β-lactams provide unlimited choices of biological activities, and they are efficaciously used as anticancer agent delivery systems directly to the tumor sites as pro-drugs. These records indicate that the designation and synthesis of new monobactams will be a favorable zone for improvement anticancer studying research.

Keywords    Monobactams, β-lactams, 2-Azetidinones, Anticancer

How to cite this article

Ahmed A. J. Mahmood (2022). Monobactams as anticancer: a review study. Science Archives, Vol. 3 (1), 1-10. http://dx.doi.org/10.47587/SA.2022.3101

References

Arya, N., Jagdale, A. Y., Patil, T. A., Yeramwar, S. S., Holikatti, S. S., Dwivedi, J., & Jain, K. S. (2014). The chemistry and biological potential of azetidin-2-ones. European journal of medicinal chemistry74, 619-656.

Banik, B. K. (Ed.). (2017). Beta-lactams: Novel synthetic pathways and applications. Springer.

Banik, B. K., Banik, I., & Becker, F. F. (2010). Asymmetric synthesis of anticancer β-lactams via Staudinger reaction: Utilization of chiral ketene from carbohydrate. European journal of medicinal chemistry45(2), 846-848.

Banik, I., Becker, F. F., & Banik, B. K. (2003). Stereoselective synthesis of β-lactams with polyaromatic imines: Entry to new and novel anticancer agents. Journal of medicinal chemistry46(1), 12-15.

Barrett, I., Carr, M., O’Boyle, N., Greene, L. M., JS Knox, A., Lloyd, D. G., & Meegan, M. J. (2010). Lead identification of conformationally restricted benzoxepin type combretastatin analogs: synthesis, antiproliferative activity, and tubulin effects. Journal of enzyme inhibition and medicinal chemistry25(2), 180-194.

Bimal K B (2014) Personal perspectives on medicinal and pharmaceutical chemistry. Frontiers in chemistry, 8, 1-3.

Borazjani, N., Sepehri, S., Behzadi, M., Jarrahpour, A., Rad, J. A., Sasanipour, M. & Turos, E. (2019). Three-component synthesis of chromeno β-lactam hybrids for inflammation and cancer screening. European journal of medicinal chemistry179, 389-403.

Cainelli, G., Galletti, P., Garbisa, S., Giacomini, D., Sartor, L., & Quintavalla, A. (2003). 4-Alkylidene-azetidin-2-ones: novel inhibitors of leukocyte elastase and gelatinase. Bioorganic & medicinal chemistry11(24), 5391-5399.

Carr, M., Greene, L. M., Knox, A. J., Lloyd, D. G., Zisterer, D. M., & Meegan, M. J. (2010). Lead identification of conformationally restricted β-lactam type combretastatin analogues: Synthesis, antiproliferative activity and tubulin targeting effects. European journal of medicinal chemistry45(12), 5752-5766.

Cerić, H., Šindler-Kulyk, M., Kovačević, M., Perić, M., & Živković, A. (2010). Azetidinone-isothiazolidinones: Stereoselective synthesis and antibacterial evaluation of new monocyclic beta-lactams. Bioorganic & medicinal chemistry18(9), 3053-3058.

Chavan, A. A., & Pai, N. R. (2007). Synthesis and biological activity of N-substituted-3-chloro-2-azetidinones. Molecules12(11), 2467-2477.

Chen, D., Falsetti, S. C., Frezza, M., Milacic, V., Kazi, A., Cui, Q. C. & Dou, Q. P. (2008). Anti-tumor activity of N-thiolated β-lactam antibiotics. Cancer letters268(1), 63-69.

Chimento, A., Sala, M., Gomez-Monterrey, I. M., Musella, S., Bertamino, A., Caruso, A., & Pezzi, V. (2013). Biological activity of 3-chloro-azetidin-2-one derivatives having interesting antiproliferative activity on human breast cancer cell lines. Bioorganic & medicinal chemistry letters23(23), 6401-6405.

Chin, J. R., Murphy, G., & Werb, Z. (1985). Stromelysin, a connective tissue-degrading metalloendopeptidase secreted by stimulated rabbit synovial fibroblasts in parallel with collagenase. Biosynthesis, isolation, characterization, and substrates. Journal of Biological Chemistry260(22), 12367-12376.

Decuyper, L., Jukič, M., Sosič, I., Žula, A., D’hooghe, M., & Gobec, S. (2018). Antibacterial and β‐lactamase inhibitory activity of monocyclic β‐Lactams. Medicinal research reviews38(2), 426-503.

Deep, A., Kumar, P., Narasimhan, B., Lim, S. M., Ramasamy, K., Mishra, R. K., & Mani, V. (2016). 2-Azetidinone derivatives: synthesis, antimicrobial, anticancer evaluation and QSAR studies. Acta Pol Pharm Drug Res73, 65-78.

Deep, A., Kumar, P., Narasimhan, B., Meng, L. S., Ramasamy, K., Mishra, R. K., & Mani, V. (2016). Synthesis, antimicrobial and anticancer evaluation of 2-azetidinones clubbed with quinazolinone. Pharmaceutical Chemistry Journal50(1), 24-28.

Deep, A., Kumar, P.,  Narasimhan, B.,  Lim, S.  M.,  Ramasamy, K.,  Mishra, R. K. and  Mani, V. (2016) Synthesis, antimicrobial, anticancer evaluation and qsar studies of thiazolidin-4-one derivatives. Acta Pol Pharm. Jan-Feb 2016;73(1):93-106.

Deepika, P., Dhanya, P., & Naseef, P. P. (2020). Docking investigation, synthesis and cytotoxic studies of coumarin substituted azetidinone derivatives. Research Journal of Pharmacy and Technology13(12), 6182-6185.

Dong, J., Huang, G., Zhang, Q., Wang, Z., Cui, J., Wu, Y. & Li, S. (2019). Development of benzochalcone derivatives as selective CYP1B1 inhibitors and anticancer agents. MedChemComm10(9), 1606-1614.

Dražić, T., Kopf, S., Corridan, J., Leuthold, M. M., Bertosa, B., & Klein, C. D. (2019). Peptide-β-lactam inhibitors of dengue and west nile virus NS2B-NS3 protease display two distinct binding modes. Journal of medicinal chemistry63(1), 140-156.

El-Shorbagi, A. N., & Chaudhary, S. (2019). Monobactams: A Unique Natural Scaffold of Four-Membered Ring Skeleton, Recent Development to Clinically Overcome Infections by Multidrug-Resistant Microbes. Letters in Drug Design & Discovery16(12), 1305-1320.

Fram, R. J. (1986). A comparison of the effects of cytosine arabinoside and beta-lactams on DNA synthesis and cellular proliferation. Cell biology and toxicology2(4), 531-539.

Frezza, M., Garay, J., Chen, D., Cui, C., Turos, E., & Dou, Q. P. (2008). Induction of tumor cell apoptosis by a novel class of N-thiolated β-lactam antibiotics with structural modifications at N1 and C3 of the lactam ring. International journal of molecular medicine21(6), 689-695.

Fu, D. J., Fu, L., Liu, Y. C., Wang, J. W., Wang, Y. Q., Han, B. K., … & Liu, H. M. (2017). Structure-activity relationship studies of β-lactam-azide analogues as orally active antitumor agents targeting the tubulin colchicine site. Scientific reports7(1), 1-12.

Galletti, P., & Giacomini, D. (2011). Monocyclic β-lactams: new structures for new biological activities. Current medicinal chemistry18(28), 4265-4283.

Geesala, R., Gangasani, J. K., Budde, M., Balasubramanian, S., Vaidya, J. R., & Das, A. (2016). 2-Azetidinones: Synthesis and biological evaluation as potential anti-breast cancer agents. European journal of medicinal chemistry124, 544-558.

Giolito, M. V., Camacho, C. M., Martinez-Amezaga, M., Traficante, C. I., Giordano, R. A., Cornier, P. G., & Rico, M. J. (2020). Antitumor activity of new chemical compounds in triple negative mammary adenocarcinoma models. Future science OA6(3), FSOA442.

Głowacka, I. E., Grabkowska-Dru˙zyc, M., Andrei, G., Schols, D., Snoeck, R., Witek, K., Podlewska, S., Handzlik, J. and Piotrowska, D. G. (2021). Novel N-Substituted 3-Aryl-4-(diethoxyphosphoryl) azetidin-2-ones as Antibiotic Enhancers and Antiviral Agents in Search for a Successful Treatment of Complex Infections. Int. J. Mol. Sci., 22, 8032.

Grabrijan, K., Strašek, N., & Gobec, S. (2021). Monocyclic beta–lactams for therapeutic uses: a patent overview (2010–2020). Expert Opinion on Therapeutic Patents31(3), 247-266.

Greene, T. F., Wang, S., Greene, L. M., Nathwani, S. M., Pollock, J. K., Malebari, A. M., & Meegan, M. J. (2016). Synthesis and biochemical evaluation of 3-phenoxy-1, 4-diarylazetidin-2-ones as tubulin-targeting antitumor agents. Journal of medicinal chemistry59(1), 90-113.

Hammersley, D., & Signy, M. (2017). Ezetimibe: an update on its clinical usefulness in specific patient groups. Therapeutic advances in chronic disease8(1), 4-11.

Hodge, M., Chen, Q. H., Bane, S., Sharma, S., Loew, M., Banerjee, A. & Kingston, D. G. (2009). Synthesis and bioactivity of a side chain bridged paclitaxel: A test of the T-Taxol conformation. Bioorganic & medicinal chemistry letters19(10), 2884-2887.

Hojilla, C. V., Mohammed, F. F., & Khokha, R. (2003). Matrix metalloproteinases and their tissue inhibitors direct cell fate during cancer development. British journal of cancer89(10), 1817-1821.

Jain, A. K., Vaidya, A., Ravichandran, V., Kashaw, S. K., & Agrawal, R. K. (2012). Recent developments and biological activities of thiazolidinone derivatives: a review. Bioorganic & medicinal chemistry20(11), 3378-3395.

Kamath, A., & Ojima, I. (2012). Advances in the chemistry of β-lactam and its medicinal applications. Tetrahedron68(52), 10640.

Kayarmar, R., Nagaraja, G. K., Naik, P., Manjunatha, H., Revanasiddappa, B. C., & Arulmoli, T. (2017). Synthesis and characterization of novel imidazoquinoline based 2-azetidinones as potent antimicrobial and anticancer agents. Journal of Saudi Chemical Society21, S434-S444.

Kazi, A., Hill, R., Long, T. E., Kuhn, D. J., Turos, E., & Dou, Q. P. (2004). Novel N-thiolated β-lactam antibiotics selectively induce apoptosis in human tumor and transformed, but not normal or nontransformed, cells. Biochemical pharmacology67(2), 365-374.

Keri, R. S., Hosamani, K. M., Reddy, H. S., & Shingalapur, R. V. (2010). Synthesis, in‐vitro Antimicrobial and Cytotoxic Studies of Novel Azetidinone Derivatives. Archiv der Pharmazie: An International Journal Pharmaceutical and Medicinal Chemistry343(4), 237-247.

Koch, V., Lorion, M. M., Barde, E., Bräse, S., & Cossy, J. (2019). Cobalt-catalyzed α-arylation of substituted α-halogeno β-lactams. Organic letters21(16), 6241-6244.

Kondratyuk, T. P., Park, E. J., Marler, L. E., Ahn, S., Yuan, Y., Choi, Y., & Pezzuto, J. M. (2011). Resveratrol derivatives as promising chemopreventive agents with improved potency and selectivity. Molecular nutrition & food research55(8), 1249-1265.

Kuhn, D., Coates, C., Daniel, K., Chen, D., Bhuiyan, M., Kazi, A. & Dou, Q. P. (2004). Beta-lactams and their potential use as novel anticancer chemotherapeutics drugs. Front Biosci9, 2605-2617.

Kumar, A., Rajput, C. S., & Bhati, S. K. (2007). Synthesis of 3-[4′-(p-chlorophenyl)-thiazol-2′-yl]-2-[(substituted azetidinone/thiazolidinone)-aminomethyl]-6-bromoquinazolin-4-ones as anti-inflammatory agent. Bioorganic & medicinal chemistry15(8), 3089-3096.

Leite, T. H., Saraiva, M. F., Pinheiro, A. C., & de Souza, M. V. N. (2020). Monocyclic β-Lactam: A Review on Synthesis and Potential Biological Activities of a Multitarget Core. Mini reviews in medicinal chemistry20(16), 1653-1682.

Lima, L. M., da Silva, B. N. M., Barbosa, G., & Barreiro, E. J. (2020). β-lactam antibiotics: An overview from a medicinal chemistry perspective. European Journal of Medicinal Chemistry, 112829.

Mahmood, A. A. (2021). Synthesis, antioxidant and antimicrobial activities for new 4, 4′-methylenedianiline amide compounds. Egyptian Journal of Chemistry64(12), 2-3.

Mahmood, A. A., Al-Iraqi, M. A., & Abachi, F. T. (2021). Design, synthesis and anti-β-lactamase activity for new monobactam compounds. Materials Today: Proceedings42, 1860-1866.

 Malebari, A. M., Fayne, D., Nathwani, S. M., O’Connell, F., Noorani, S., Twamley, B., & Meegan, M. J. (2020). β-Lactams with antiproliferative and antiapoptotic activity in breast and chemoresistant colon cancer cells. European journal of medicinal chemistry189, 112050.

Malig, T. C., Yu, D., & Hein, J. E. (2018). A Revised Mechanism for the Kinugasa Reaction. Journal of the American Chemical Society140(29), 9167-9173.

Martelli, G., Bloise, N., Merlettini, A., Bruni, G., Visai, L., Focarete, M. L., & Giacomini, D. (2020). Combining biologically active β-lactams integrin agonists with poly (l-lactic acid) nanofibers: enhancement of human mesenchymal stem cell adhesion. Biomacromolecules21(3), 1157-1170.

Meegan, M. J., Carr, M., Knox, A. J., Zisterer, D. M., & Lloyd, D. G. (2008). β-Lactam type molecular scaffolds for antiproliferative activity: Synthesis and cytotoxic effects in breast cancer cells. Journal of enzyme inhibition and medicinal chemistry23(5), 668-685.

Meegan, M. J., Hughes, R. B., Lloyd, D. G., Williams, D. C., & Zisterer, D. M. (2001). Flexible estrogen receptor modulators: design, synthesis, and antagonistic effects in human MCF-7 breast cancer cells. Journal of medicinal chemistry44(7), 1072-1084.

Meenakshisundaram, S., Manickam, M., & Vinayagam, V. (2016). Synthesis, antibacterial and anticancer activity of novel bis-azetidinones. J. Chem. Pharm. Res8(2), 733-742.

Mehta, P. D., Sengar, N. P. S., Pathak, A. K. (2010). 2-Azetidinone-a new profile of various pharmacological activities. Eur J Med Chem 45:5541–5560. https ://doi.org/10.1016/j.ejmec h.2010.09.035

Mohamadzadeh, M. and Zarei, M. (2020) Anticancer activity and evaluation of apoptotic genes expression of 2‑azetidinones containing anthraquinone moiety. Mol Divers, 2021 Nov;25(4):2429-2439.

Nam, N. H. (2003). Combretastatin A-4 analogues as antimitotic antitumor agents. Current Medicinal Chemistry. 2003 Sep;10(17):1697-1722.

O’Boyle, N. M., Carr, M., Greene, L. M., Bergin, O., Nathwani, S. M., McCabe, T., & Meegan, M. J. (2010). Synthesis and evaluation of azetidinone analogues of combretastatin A-4 as tubulin targeting agents. Journal of medicinal chemistry53(24), 8569-8584.

Ojima, I., & Delaloge, F. (1997). Asymmetric synthesis of building-blocks for peptides and peptidomimetics by means of the β-lactam synthon method. Chemical Society Reviews26(5), 377-386.

Olazaran, F. E., Rivera, G., Pérez-Vázquez, A. M., Morales-Reyes, C. M., Segura-Cabrera, A., & Balderas-Rentería, I. (2017). Biological evaluation in vitro and in silico of azetidin-2-one derivatives as potential anticancer agents. ACS medicinal chemistry letters8(1), 32-37.

Pathak, R. B., Chovatia, P. T., & Parekh, H. H. (2012). Synthesis, antitubercular and antimicrobial evaluation of 3-(4-chlorophenyl)-4-substituted pyrazole derivatives. Bioorganic & medicinal chemistry letters22(15), 5129-5133.

Patil, S. A., Patil, S. A., Fariyike, T., Marichev, K. O., Heras Martinez, H. M., & Bugarin, A. (2021). Medicinal applications of coumarins bearing azetidinone and thiazolidinone moieties. Future Medicinal Chemistry13(21), 1907-1934.

Petrovski, G., Gurusamy, N., & Das, D. K. (2011). Resveratrol in cardiovascular health and disease. Annals of the New York Academy of Sciences1215(1), 22-33.

Pettit, G. R., Smith, C. R., & Singh, S. B. (1987). Recent advances in the chemistry of plant antineoplastic constituents. Biologically active natural products/edited by K. Hostettmann and PJ Lea.

Sharipova, R. R., Belenok, M. G., Garifullin, B. F., Sapunova, A. S., Voloshina, A. D., Andreeva, O. V. & Kataev, V. E. (2019). Synthesis and anti-cancer activities of glycosides and glycoconjugates of diterpenoid isosteviol. MedChemComm10(8), 1488-1498.

Singh, G. S. (2003). Recent progress in the synthesis and chemistry of azetidinones. Tetrahedron59(39), 7631-7649.

Smith, D. M., Kazi, A., Smith, L., Long, T. E., Heldreth, B., Turos, E., & Dou, Q. P. (2002). A novel β-lactam antibiotic activates tumor cell apoptotic program by inducing DNA damage. Molecular pharmacology61(6), 1348-1358.

Smith, S. R., Douglas, J., Prevet, H., Shapland, P., Slawin, A. M., & Smith, A. D. (2014). Isothiourea-catalyzed asymmetric synthesis of β-lactams and β-amino esters from arylacetic acid derivatives and N-sulfonylaldimines. The Journal of organic chemistry79(4), 1626-1639.

Söderström, T. S., Poukkula, M., Holmström, T. H., Heiskanen, K. M., & Eriksson, J. E. (2002). Mitogen-activated protein kinase/extracellular signal-regulated kinase signaling in activated T cells abrogates TRAIL-induced apoptosis upstream of the mitochondrial amplification loop and caspase-8. The Journal of Immunology169(6), 2851-2860.

Sun, L., Vasilevich, N. I., Fuselier, J. A., Hocart, S. J., & Coy, D. H. (2004). Examination of the 1, 4-disubstituted azetidinone ring system as a template for combretastatin A-4 conformationally restricted analogue design. Bioorganic & medicinal chemistry letters14(9), 2041-2046.

Tanaka, T., Muto, T., Maruoka, H., Imajo, S., Fukami, H., Tomimori, Y., & Nakatsuka, T. (2007). Identification of 6-substituted 4-arylsulfonyl-1, 4-diazepane-2, 5-diones as a novel scaffold for human chymase inhibitors. Bioorganic & medicinal chemistry letters17(12), 3431-3434.

Tikhomirov, A. S., Shtil, A. A., Shchekotikhin, A. E. (2018). Advances in the discovery of anthraquinone-based anticancer agents. Recent Pat Anticancer Drug Discov 13:159–183. https ://doi.org/10.2174/15748 92813 66617 12061 23114

Tripodi, F., Dapiaggi, F., Orsini, F., Pagliarin, R., Sello, G., & Coccetti, P. (2018). Synthesis and biological evaluation of new 3-amino-2-azetidinone derivatives as anti-colorectal cancer agents. MedChemComm9(5), 843-852.

Tripodi, F., Pagliarin, R., Fumagalli, G., Bigi, A., Fusi, P., Orsini, F. & Coccetti, P. (2012). Synthesis and biological evaluation of 1, 4-diaryl-2-azetidinones as specific anticancer agents: activation of adenosine monophosphate activated protein kinase and induction of apoptosis. Journal of medicinal chemistry55(5), 2112-2124.

Trivedi, A. R., Desai, J. M., Dholariya, B. H., Dodiya, D. K., & Shah, V. H. (2012). Synthesis and antimicrobial evaluation of novel benzo [b] thiophenes comprising β-lactam nucleus. Medicinal Chemistry Research21(7), 1471-1479.

Valtorta, S., Nicolini, G., Tripodi, F., Meregalli, C., Cavaletti, G., Avezza, F. & Coccetti, P. (2014). A novel AMPK activator reduces glucose uptake and inhibits tumor progression in a mouse xenograft model of colorectal cancer. Investigational new drugs32(6), 1123-1133.

Vento, S., & Cainelli, F. (2003). Infections in patients with cancer undergoing chemotherapy: aetiology, prevention, and treatment. The lancet oncology4(10), 595-604.

Wilhelm, S. M., Collier, I. E., Kronberger, A., Eisen, A. Z., Marmer, B. L., Grant, G. A., … & Goldberg, G. I. (1987). Human skin fibroblast stromelysin: structure, glycosylation, substrate specificity, and differential expression in normal and tumorigenic cells. Proceedings of the National Academy of Sciences84(19), 6725-6729.

Zhang, Y. (2010). Allyl isothiocyanate as a cancer chemopreventive phytochemical. Molecular nutrition & food research54(1), 127-135.

Zhou, P., Liang, Y., Zhang, H., Jiang, H., Feng, K., Xu, P. & Wang, Y. (2018). Design, synthesis, biological evaluation and cocrystal structures with tubulin of chiral β-lactam bridged combretastatin A-4 analogues as potent antitumor agents. European journal of medicinal chemistry144, 817-842.

Zhou, P., Liu, Y., Zhou, L., Zhu, K., Feng, K., Zhang, H., & Wang, Y. (2016). Potent antitumor activities and structure basis of the chiral β-lactam bridged analogue of combretastatin A-4 binding to tubulin. Journal of medicinal chemistry59(22), 10329-10334.

Zhuang, C., Zhang, W., Sheng, C., Zhang, W., Xing, C., & Miao, Z. (2017). Chalcone: a privileged structure in medicinal chemistry. Chemical reviews117(12), 7762-7810.

License                      Article Metadata

This work is licensed under a Creative Commons Attribution 4.0 International License.

[pdf_attachment file="1" name="View Details"]